Hostname: page-component-6d856f89d9-fb4gq Total loading time: 0 Render date: 2024-07-16T04:13:30.544Z Has data issue: false hasContentIssue false

Studies on Dracunculus medinensis (Linnaeus) III. Structure of the Phasmids in the First-Stage Larva

Structure of the Phasmids in the First-Staģe Larva

Published online by Cambridge University Press:  05 June 2009

R. Muller
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT
D.S. Ellis
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT

Extract

The phasmids of the first-stage larva of Dracunculus medinensis were paired, each consisting of a single cell with a lumen connected to the exterior by a closable duct. The cell consisted of an outer region filled with mitochondria and an inner region consisting of endoplasmic reticulum bordering the lumen, whose inner surfaces was supported by a fibrillar framework. There were a pair of cilia projecting into the lumen of each cell and two nerve bundles at the base in direct continuity with a branch of the lateral nerve. The lumen of the phasmidial cell contained acid mucopolysaccharides and esterases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, A. F., 1966.—“Esterases in the genus Meloidogyne.” Nemalologica, 12, 359–61.CrossRefGoogle Scholar
Bird, A. F., 1971.—“The structure of nematodes.” Academic Press, New York and London.Google Scholar
Burstone, M. S., 1958.—“The relationship between fixation and techniques for the histochemical localization of hydrolytic enzymes.” J. Histochem. Cytochem., 6, 322–39.CrossRefGoogle ScholarPubMed
Chitwood, B. E. and Chitwood, M. B.,1950.—“An introduction to nematology.” Monumental Printing Co., Maryland.Google Scholar
Crofton, H. D., 1966.—“Nematodes,” Hutchinson University Library, London.Google Scholar
Ellis, D. S., 1971.—“A simple method for cutting out selected areas from material embedded on slides for electron microscopy.” Journal of Microscopy, 93, 237–39.CrossRefGoogle ScholarPubMed
Gomori, E., 1952.—“Histochemistry of esterases.” Int. Rev. Cytol., 1, 323.CrossRefGoogle Scholar
Kozek, W. J., 1968.—“Unusual cilia in the microfilaria of Dirofilaria immitis.“ J. Parasit., 54, 838–44.CrossRefGoogle ScholarPubMed
Kozek, W. J., 1971.—“Ultrastructure of the microfilaria of Dirofilaria immitis.” J. Parasit., 57, 1052–67.CrossRefGoogle ScholarPubMed
Lee, D. L., 1962.—“Distribution of esterase enzymes in Ascaris lumbricoides.Parasitology, 54, 241–60.CrossRefGoogle Scholar
Lee, D. L., 1965.—“Physiology of nematodes.” Oliver and Boyd, Edinburgh.Google Scholar
Lev, R. and Spicer, S. S., 1964.—“Specific staining of sulphate groups with alcian blue at low pH.” J. Histochem., 12, 309.Google ScholarPubMed
Lyons, K. M., 1969.—“Sense organs of monogenean skin parasites ending in a typical cilium.” Parasitology, 59, 611–24.CrossRefGoogle Scholar
McLaren, D. L., 1969.—“Ciliary structures in the microfilaria of Loa loa.” Trans. Roy. Soc. trop. Med. Hyg., 63, 290–1.CrossRefGoogle ScholarPubMed
McLaren, D. L., 1970.—“Preliminary observations on the sensory structures in adult filariae.” Trans. Roy. Soc. trop. Med. Hyg., 64, 191–2.CrossRefGoogle ScholarPubMed
Muller, R., 1970.—“Dracunculus medinensis: diagnosis by indirect fluorescent antibody technique.” Exper. Parasit., 27, 357361.CrossRefGoogle ScholarPubMed
Muller, R.Ellis, D. S. and Bird, R. G., 1970.—“Electron microscope studies of the phasmids in Dracunculus medinensis larvae.” (Demonstration). Trans. Roy. Soc. trop. Med. Hyg., 64, 24.Google ScholarPubMed
Muller, R., 1972.—“Maintenance of Dracunculus medinensis (L.) in the laboratory and observations on experimental infections.” Parasitology, 64, 107116CrossRefGoogle ScholarPubMed
Paramanou, A. A., 1954.—“(On the structure and function of phasmids).” [In Russian.] Trudy Gelmint. Laboratory, Akad. Nauk SSSR, 7, 1949.Google Scholar
Pearse, A. E. G., 1960.—“Histochemistry, theoretical and applied.” Churchill, London.Google Scholar
Poinar, G. O. Jn., 1965.—“Life history of Pelodera strongyloides (Schneider) in the orbits of murine rodents in Great Britain.” Proc. helminth. Soc. Wash.. 32, 148151.Google Scholar
Ramisz, A., 1966.—“Studies on the nervous system of nematodes by means of a histochemical method for active acetylcholincsterase.” Acta Parasit. Pol., 14, 91101.Google Scholar
Roggen, D. R., Raski, D. J. and Jones, N. O., 1966.—“Cilia in nematode sensory organs..” Science, 152, 515516.CrossRefGoogle ScholarPubMed
Rohde, R. A., 1960.—“Acetylcholinesterase in plant parasitic nematodes and an anticholinesterase from asparagus.” Proc. helminth. Soc. Wash., 27, 121123.Google Scholar
Ross, M. M. R., 1967.—“Modified cilia in sensory organs of juvenile stages of a parasitic nematode.” Science, 156, 14911495.CrossRefGoogle ScholarPubMed
Simpson, M. G. and Laurence, B. R., 1972.—“Histochemical studies on microfilariae.” Parasitology, 64, 6188.CrossRefGoogle ScholarPubMed
Slifer, E. H., 1967.—“The thin walled olfactory sense organs on insect antennae.” In insects and physiology, ed: Beaumont J. N. L. and Trehearne J. E. pp. 233245. Oliver and Boyd, Edinburgh.Google Scholar
Stephenson, W., 1942.—“The effects of variations in osmotic pressure upon a free-living soil nematode.” Parasitology, 34, 253365.CrossRefGoogle Scholar