Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T01:43:33.789Z Has data issue: false hasContentIssue false

Ultrastructure of the cercomer of the metacestode Microsomacanthus paraparvula Regel, 1994 (Cestoda: Hymenolepididae)

Published online by Cambridge University Press:  17 October 2012

N.A. Pospekhova*
Affiliation:
Laboratory of Helminth Ecology, Institute of Biological Problems of the North, Far Eastern Branch of Russian Academy of Sciences, Magadan685000, Russia
K.V. Regel
Affiliation:
Laboratory of Helminth Ecology, Institute of Biological Problems of the North, Far Eastern Branch of Russian Academy of Sciences, Magadan685000, Russia
*
*E-mail: posna@ibpn.ru

Abstract

Investigations were undertaken using light and transmission electron microscopy to clearly delineate the morphology of the cercomer, i.e. the protective envelopes and tail appendage, in cysticercoids of Microsomacanthus paraparvula, which develop in the haemocoel of the caddisworm Grensia praeterita (Insecta: Trichoptera). Two protective envelopes, the exocyst and endocyst, were identified. The non-cellular exocyst is found to consist of granular material and of thin, dense membrane-like layers, which are located parallel to each other. The exocyst of the mature metacestode tightly adjoins the outer surface of the endocyst, containing prospective parts (the scolex and the neck), except for the areas at its poles. A long tail appendage is located outside the exocyst. Evidence was found to indicate the existence of active synthetic processes occurring in the tail appendage. Non-cellular exocysts are widely distributed within metacestodes of the families Hymenolepididae and Dilepididae, and, presumably, are formed by means of glandular secretions from the oncosphere, given the early appearance of non-cellular exocysts in ontogeny.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beveridge, I. (2001) The use of life-cycle characters in studies of the evolution of cestodes. pp. 250256in Littlewood, D.T.J. & Bray, R.A. (Eds) Interrelationships of the Platyhelminthes. London, Taylor & Francis.Google Scholar
Bondarenko, S.K. & Kontrimavichus, V.L. (2004) Life-cycles of cestodes of the genus Branchiopodataenia Bondarenko & Kontrimavichus, 2004 (Cestoda: Hymenolepididae), from gulls in Chukotka. Systematic Parasitology 57, 191199.CrossRefGoogle ScholarPubMed
Bondarenko, S.K. & Kontrimavichus, V.L. (2006) Aploparaksidae of wild and domesticated birds. Fundamentals of Cestodology. Vol.14. 443 pp. Moskow, Nauka (in Russian).Google Scholar
Chervy, L. (2002) The terminology of larval cestodes or metacestodes. Systematic Parasitology 52, 133.CrossRefGoogle Scholar
Denny, M. (1969) Life-cycles of helminth parasites using Gammarus lacustris as an intermediate host in a Canadian Lake. Parasitology 59, 795827.CrossRefGoogle Scholar
Freeman, R.S. (1973) Ontogeny of cestodes and its bearing on their phylogeny and systematics. Advances in Parasitology 11, 481557.CrossRefGoogle ScholarPubMed
Gabrion, C. (1975) Étude expérimentale du développement larvaire d'Anomotaenia constricta (Molin, 1858) Cohn, 1900 chez un Coléoptère Pimelia sulcata Geoffr. Zeitschrift für Parasitenkunde 47, 249262.CrossRefGoogle Scholar
Gabrion, C. & Gabrion, J. (1976) Étude ultrastructurale de la larve de Anomotaenia constricta (Cestoda, Cyclophyllidea). Zeitschrift für Parasitenkunde 49, 161177.CrossRefGoogle Scholar
Gabrion, C. & Helluy, S. (1982) Développement larvaire de Paricterotaenia porosa (Cestoda: Cyclophyllidea, Dilepididae) chez des diptères du genre Chironomus, hôtes expérimentaux. Annales de Parasitologie Humaine et Comparée 57, 3352.CrossRefGoogle Scholar
Gabrion, C. & Jourdan, J. (1979) Étude ultrastructurale du cysticercoide de Choanotaenia crassiscolex von Linstow, 1890, parasite d'Arion lusitanicus. Haliotis 8, 121125.Google Scholar
Gabrion, C., Plateaux, L. & Quentin, C. (1976) Anomotaenia brevis (Clerc, 1902) Fuhrmann, 1908 Cestode Cyclophyllide, parasite de Leptothorax nylanderi (Forster) Hymenoptere, Formicide. Annales de Parasitologie 51, 407420.Google Scholar
Galkin, A.K. & Regel, K.V. (2010) Diagnostic features of Microsomacanthus microsoma (Creplin, 1829), type species of the genus Microsomacanthus Lopez-Neyra, 1942, as the base for the revision of the genus. Parazitologiya 44, 389405(in Russian).Google ScholarPubMed
Grytner-Ziecina, B. (1994) The life cycle of Fimbriaria czaplinskii Grytner-Ziecina, 1994 (Cestoda, Hymenolepididae). Acta Parasitologica 39, 141145.Google Scholar
Gulyaev, V.D. (1996) Origin of basic characters in morphology and ontogenesis of tapeworms (Cestoda). 2. Cercomer homology in cestodes and origin of intercalary parasitic larva-cercoid. Zoologicheskii Zhurnal 75, 961971(in Russian).Google Scholar
Gulyaev, V.D. & Ishigenova, L.A. (2003) On a life cycle of Unciunia raymondi (Cestoda: Cyclophyllidea: Dilepididae). Parazitologiya 37, 411417(in Russian).Google Scholar
Gulyaev, V.D. & Kornienko, S.A. (1998) On morphological peculiarities of monocercus cysticercoids (Cestoda: Cyclophyllidea: Dilepididae). Parazitologiya 32, 141145(in Russian).Google Scholar
Janicki, C. (1920) Grundlinien einer Cercomer Theorie zur Morphologie der Trematoden und Cestoden. Festschrift zur Feier des 60. Geburtstages (27 Mai 1920) von Friedrich Zschokke, Prof., Basel 30, 122.Google Scholar
Jarecka, L. (1975) Ontogeny and evolution of cestodes. Acta Parasitologica 23, 93114.Google Scholar
Jarecka, L. & Burt, M.D.B. (1984) The cercoid larvae of Pseudanthobothrium hanseni Baer, 1956 and Pseudanthobothrium sp. (Cestoda: Tetraphyllidea) from experimentally infected harpacticoid copepods. Acta Parasitologica 29, 2326.Google Scholar
Jarecka, L., Michajlow, W. & Burt, M.D.B. (1981) Comparative ultrastructure of cestode larvae and Janicki's cercomer theory. Acta Parasitologica Polonica 28, 6572.Google Scholar
Jarecka, L., Bance, G.N. & Burt, M.D.B. (1984) On the life cycle of Anomotaenia micracantha dominicana (Railliet et Henry, 1912) with ultrastructural evidence supporting the definition cercoscolex for dilepidid larvae (Cestoda, Dilepididae). Acta Parasitologica 29, 2734.Google Scholar
Kashin, V.A. (1986) Comparative morphology and histochemistry of penetration glands of oncospheres of some species of cyclophyllids. Parazitologiya 20, 126131(in Russian).Google Scholar
Kotel'nikov, G.A. (1965) Development of cestodes of the genus Fimbriaria Froelich, 1802. pp. 136141in Ershov, V.S. (Ed.) Tezisy Dokladov Nauchnoi Conferencii Vsesoyuznogo Obshcestva Gelmintologov AN SSSR. Ch. 3 (in Russian).Google Scholar
Kotel'nikov, G.A. (1971) Typology of larval forms in cestodes of hymenolepidid family. pp. 116126in Ershov, V.S. (Ed.) Tezisy Dokladov Nauchnoi Conferencii Vsesoyuznogo Obshcestva Gelmintologov. AN SSSR. Ch. 22 (in Russian).Google Scholar
Krasnoshchekov, G.P. (1980) Cercomere, a larval organ in cestodes. Zhurnal Obshchey Biologii 41, 615627(in Russian).Google Scholar
Krasnoshchekov, G.P. & Pluzhnikov, L.T. (1984) Ultrastructure of cysticercoids of Fimbriaria fasciolaris (Hymenolepididae). Parazitologiya 18, 4752(in Russian).Google Scholar
Krasnoshchekov, G.P. & Tomilovskaya, N.S. (1978) Morphology and development of the cysticercoid of Paricterotaenia porosa (Rud., 1810) (Cestoda: Dilepididae). Parazitologiya 12, 108115(in Russian).Google Scholar
Maksimova, A.P. (1990) Branchinella spinosa (Anostraca), an intermediate host of cestodes of the genus Wardium (Cestoda: Hymenolepididae). Parazitologiya 24, 8992(in Russian).Google Scholar
Morgenstern, E. (1969) Vergleichende lichtoptische Untersuchungen im Rahmen electronenmikroscopischer Arbeiten an ultradünnen Schnitten. II. Farbemethoden. Mikroskopie 25, 250260.Google Scholar
Nikishin, V.P. & Lebedev, D.V. (2009) Structure and function of exocyst of cysticercoids Microsomacanthus lari (Cestoda, Hymenolepididae). Vestnik zoologii 23, 153160(in Russian).Google Scholar
Nikishin, V.P. & Lebedev, D.V. (2011) Experimental evidence of the defense role of the exocyst in the metacestode of Microsomacanthus lari Belogurov et Kulikov, in Spasskaja, 1966 (Cestoda: Hymenolepididae). Russian Journal of Marine Biology 37, 7174(in Russian).CrossRefGoogle Scholar
Regel, K.V. (1986) Development of larvocysts of cyclocercus type. Parazitologiya 20, 188194(in Russian).Google Scholar
Regel, K.V. (2000) The cestode fauna of the family Hymenolepididae of anseriform birds of Chukotka. Genus Dicranotaenia. Parazitologiya 34, 302314(in Russian).Google Scholar
Regel, K.V. & Kashin, V.A. (1995) A life cycle and fine morphology of embryonic shells of Microsomacanthus paraparvula (Cestoda: Hymenolepididae) the parasite of diving ducks in Chukotka. Parazitologiya 29, 511519(in Russian).Google ScholarPubMed
Swiderski, Z. (2007) Postembryonic development of tapeworms – source of novel phylogenetic characters for analysis of cestode evolution: comparative TEM studies. Helminthologia 44, 130136.CrossRefGoogle Scholar
Valkounova, J. (1985) Morphology and histochemistry of cysticercoids of four cestode species of the family Hymenolepididae Fuhrmann, 1907 from planktonic crustaceans (Copepoda, Ostracoda). Folia Parasitologica 32, 333340.Google Scholar