Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-02T01:16:00.121Z Has data issue: false hasContentIssue false

The future of early disease detection? Applications of electronic nose technology in otolaryngology

Published online by Cambridge University Press:  02 June 2010

N Charaklias
Affiliation:
ENT Department, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK Cranfield Health, Cranfield University, UK
H Raja
Affiliation:
ENT Department, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
M L Humphreys
Affiliation:
Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK Cranfield Health, Cranfield University, UK
N Magan
Affiliation:
Cranfield Health, Cranfield University, UK
C A Kendall*
Affiliation:
Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK Cranfield Health, Cranfield University, UK
*
Address for correspondence: Dr C A Kendall, Royal Society Dorothy Hodgkin Fellow, Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester GL1 3NN, UK. Fax: +44 (0)8454 225485 E-mail: c.kendall@medical-research-centre.com

Abstract

Introduction:

Recent advances in electronic nose technology, and successful clinical applications, are facilitating the development of new methods for rapid, bedside diagnosis of disease. There is a real clinical need for such new diagnostic tools in otolaryngology.

Materials and methods:

We present a critical review of recent advances in electronic nose technology and current applications in otolaryngology.

Results:

The literature reports evidence of accurate diagnosis of common otolaryngological conditions such as sinusitis (acute and chronic), chronic suppurative otitis media, otitis externa and nasal vestibulitis. A significant recent development is the successful identification of biofilm-producing versus non-biofilm-producing pseudomonas and staphylococcus species.

Conclusion:

Electronic nose technology holds significant potential for enabling rapid, non-invasive, bedside diagnosis of otolaryngological disease.

Type
Review Article
Copyright
Copyright © JLO (1984) Limited 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nagle, HT, Gutierrez-Osuna, R, Schiffman, SS. The how and why of electronic noses. Spectrum 1998;35:2231CrossRefGoogle Scholar
2 Gardner, JW, Bartlett, PN. A brief history of electronic noses. Sens Actuators B Chem 1994;18:210–11CrossRefGoogle Scholar
3 Persaud, K, Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982;299:352–5CrossRefGoogle ScholarPubMed
4 Vlastarakos, PV, Nikolopoulos, TP, Maragoudakis, P, Tzagaroulakis, A, Ferekidis, E. Biofilms in ear, nose, and throat infections: how important are they? Laryngoscope 2007;117:668–73CrossRefGoogle Scholar
5 Macassey, E, Dawes, P. Biofilms and their role in otorhinolaryngological disease. J Laryngol Otol 2008;122:1273–8CrossRefGoogle ScholarPubMed
6 Shykhon, ME, Morgan, DW, Dutta, R, Hines, EL, Gardner, JW. Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: a preliminary study. J Laryngol Otol 2004;118:706–9CrossRefGoogle ScholarPubMed
7 Thaler, ER, Hanson, CW. Use of an electronic nose to diagnose bacterial sinusitis. Am J Rhinol 2006;20:170–2CrossRefGoogle ScholarPubMed
8 Bruno, E, Alessandrini, M, Ottaviani, F, Delfini, A, Pierro, DD, Camillo, A et al. Can the electronic nose diagnose chronic rhinosinusitis? A new experimental study. Eur Arch Otorhinolaryngol 2008;265:425–8CrossRefGoogle ScholarPubMed
9 Thaler, ER, Huang, D, Giebeig, L, Palmer, J, Lee, D, Hanson, CW et al. Use of an electronic nose for detection of biofilms. Am J Rhinol 2008;22:2933CrossRefGoogle ScholarPubMed
10 Du, WX, Kim, J, Cornell, JA, Huang, T, Marshall, MR, Wei, CI. Microbiological, sensory, and electronic nose evaluation of yellowfin tuna under various storage conditions. J Food Prot 2001;64:2027–36CrossRefGoogle ScholarPubMed
11 Di Natale, C, Macagnano, A, Davide, F, D'Amico, A, Paolesse, R, Boschi, T et al. An electronic nose for food analysis. Sens Actuators B Chem 1997;44:521–6CrossRefGoogle Scholar
12 Keshri, G, Magan, N. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. Appl Microbiol 2000;89:825–33CrossRefGoogle ScholarPubMed
13 Sahgal, N, Needham, R, Cabañes, FJ, Magan, N. Potential for detection and discrimination between mycotoxigenic and non-toxigenic moulds using volatile production patterns: a review. Food Additives and Contaminants 2007;24:1161–8CrossRefGoogle ScholarPubMed
14 Canhoto, O, Pinzari, F, Fanelli, C, Magan, N. Application of electronic nose technology for the early detection of fungal contamination in library paper. International Biodeterioration & Biodegradation 2004;54:303–9CrossRefGoogle Scholar
15 Pavlou, AK, Magan, N, Meecham Jones, J, Brown, J, Klaster, P, Turner, APF. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron 2004;20:538–44CrossRefGoogle ScholarPubMed
16 Pavlou, AK, Magan, N, Turner, APF, Sharp, D, Brown, J, Barr, H. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosens Bioelectron 2000;15:333–42CrossRefGoogle ScholarPubMed
17 Montag, S, Frank, M, Ulmer, H, Wernet, D, Gopel, W, Rammensee, HG. Electronic nose detects major histocompatibility complex-dependent prerenal and postrenal odor components. Proc Natl Acad Sci U S A 2001;98:9249–54CrossRefGoogle ScholarPubMed
18 Pavlou, A, Magan, N, McNulty, C, Meecham Jones, J, Sharp, D, Brown, J et al. Use of an electronic nose system for diagnosis of urinary tract infections. Biosens Bioelectron 2002;17:893–9CrossRefGoogle ScholarPubMed
19 Sahgal, N, Monk, B, Wasil, M, Magan, N. Trichophyton species: use of volatile fingerprints for rapid identification and discrimination. Br J Dermatol 2006;155:1209–16CrossRefGoogle Scholar
20 Hockstein, NG, Thaler, ER. Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. Laryngoscope 2004;114:1701–5CrossRefGoogle ScholarPubMed
21 Adrie, C, Monchi, M. Exhaled and nasal nitric oxide as a marker of pneumonia in ventilated patients. Am J Respir Crit Care Med 2001;163:1143–9CrossRefGoogle ScholarPubMed
22 Phillips, M, Gleeson, K. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 1999;353:1930–3CrossRefGoogle ScholarPubMed
23 Di Natale, C, Macagnano, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 2003;18:1209–18CrossRefGoogle ScholarPubMed
24 Phillips, MR, Cataneo, N. Volatile markers of breast cancer in the breath. Breast J 2003;9:184–91CrossRefGoogle ScholarPubMed
25 Dragonieri, S, Schot, R, Mertens, BJ, Le Cessie, S, Gauw, SA, Spanevello, A et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 2007;120:856–62CrossRefGoogle ScholarPubMed
26 Naraghi, K, Sahgal, N, Adriaans, B, Barr, H, Magan, N. Use of volatile fingerprints for rapid screening of antifungal agents for efficacy against dermatophyte Trichophyton species. Sens Actuators B Chem 2010, in pressCrossRefGoogle Scholar
27 Turner, AP, Magan, N. Electronic noses and disease diagnostics. Nat Rev Microbiol 2004;2:161–6CrossRefGoogle ScholarPubMed
28 Thaler, ER, Hanson, CW. Medical applications of electronic nose technology. Expert Rev Med Devices 2005;2:559–66CrossRefGoogle ScholarPubMed
29 Thaler, ER, Kennedy, DW, Hanson, CW. Medical applications of electronic nose technology: review of current status. Am J Rhinol 2001;15:291–5CrossRefGoogle ScholarPubMed
30 Palmer, JN. Bacterial biofilms: do they play a role in chronic sinusitis? Otolaryngol Clin North Am 2005;38:1193–201CrossRefGoogle ScholarPubMed
31 Chloe, RA, Faddis, BT. Evidence for microbial biofilms in cholesteatoma. Arch Otolaryngol Head Neck Surg 2002;128:1129–33Google Scholar
32 Mehta, A, Lee, J, Stevens, G, Antonelli, P. Opening plugged tympanostomy tubes: effects of biofilm formation. Otolaryngol Head Neck Surg 2003;134:121–5CrossRefGoogle Scholar
33 Chloe, R, Faddis, B. Anatomical evidence of microbial biofilms in tonsillar tissues. Arch Otolaryngol Head Neck Surg 2003;129:634–6Google Scholar
34 Ehrlich, GD, Veeh, R, Wang, X, Costerton, JW, Hayes, JD, Hu, FZ et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 2002;287:1710–15CrossRefGoogle ScholarPubMed
35 Everaert, EP, Mahieu, HF, Chung, RPW, Verkerke, GJ, van der Mei, HC, Busscher, HJ. A new method for in vivo evaluation of biofilms on surface-modified silicone rubber voice prostheses. Eur Arch Otorhinolaryngol 1997;254:261–3CrossRefGoogle ScholarPubMed
36 Leunisse, C, van Weissenbruch, R, Busscher, HJ, van der Mei, HC, Dijk, F, Albers, FW. Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses an electron microscopical study. J Biomed Mater Res 2001;58:556–63CrossRefGoogle ScholarPubMed
37 Antonelli, PJ, Lee, JC, Burne, RA. Bacterial biofilms may contribute to persistent cochlear implant infection. Otol Neurotol 2004;25:953–7CrossRefGoogle ScholarPubMed
38 Pawlowski, KS, Wawro, D, Roland, PS. Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 2005;26:972–5CrossRefGoogle ScholarPubMed
39 Sanderson, AR, Leid, JG, Hunsaker, D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 2006;116:1121–6CrossRefGoogle ScholarPubMed
40 Zuliani, G, Carron, M, Gurrola, J, Coleman, C, Haupert, M, Berk, R et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 2006;70:1613–17CrossRefGoogle ScholarPubMed
41 Perloff, JR, Palmer, JN. Evidence of bacterial biofilms in a rabbit model of sinusitis. Am J Rhinol 2005;19:16CrossRefGoogle Scholar
42 Perloff, JR, Palmer, JN. Evidence of bacterial biofilms on frontal recess stents in patients with chronic rhinosinusitis. Am J Rhinol 2004;18:377–80CrossRefGoogle ScholarPubMed
43 Ishida, H, Ishida, Y, Kurosaka, Y, Otani, T, Sato, K, Kobayashi, H. In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998;42:1641–5CrossRefGoogle ScholarPubMed
44 Scadding, GK, Durham, SR, Mirakian, R, Jones, NS, Drake-Lee, AB, Ryan, D et al. BSACI guidelines for the management of rhinosinusitis and nasal polyposis. Clin Exp Allergy 2008;38:260–75CrossRefGoogle ScholarPubMed
45 Gliklich, RE, Metson, R. The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg 1995;113:104–9CrossRefGoogle ScholarPubMed
46 Fireman, P. Treatment of allergic rhinitis: effect on occupation productivity and work force costs. Allergy Asthma Proc 1997;18:63–7CrossRefGoogle ScholarPubMed
47 Kinshuck, A, Lesser, T. The composition of an ENT clinic? Sens Actuators B Chem 2010;146:521–26Google Scholar
48 Prince, AA, Steiger, JD, Khalid, AN, Dogrhamji, L, Reger, C, Eau Claire, S et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol 2008;22:239–45CrossRefGoogle ScholarPubMed
49 Palmer, J. Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol Suppl 2006;196:35–9CrossRefGoogle ScholarPubMed
50 Verhoeff, M, van der Veen, EL, Rovers, MM, Sanders, EA, Schilder, AG. Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol 2006;70:112CrossRefGoogle ScholarPubMed
51 Lee, MR, Pawlowski, KS, Luong, A, Furze, AD, Roland, PS. Biofilm presence in humans with chronic suppurative otitis media. Otolaryngol Head Neck Surg 2009;141:567–71CrossRefGoogle ScholarPubMed