Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T06:20:22.990Z Has data issue: false hasContentIssue false

Value of surveillance ultrasound following hemithyroidectomy

Published online by Cambridge University Press:  13 June 2023

Owen O'Brien*
Affiliation:
Radiology, Glasgow Royal Infirmary, Glasgow, Scotland, UK
Omar Hilmi
Affiliation:
ENT Surgery, Glasgow Royal Infirmary, Glasgow, Scotland, UK
Sylvia Wright
Affiliation:
Department of Pathology, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
Claire McArthur
Affiliation:
Radiology, Glasgow Royal Infirmary, Glasgow, Scotland, UK
*
Corresponding author: Owen O'Brien; Email: owen.obrien3@nhs.scot

Abstract

Background

There is limited evidence or agreement on the benefit, duration and frequency of post-operative surveillance neck ultrasound in patients with differentiated thyroid cancer treated with hemithyroidectomy alone. This study's primary aim was to assess the benefit of neck ultrasound in this situation, with a secondary aim to assess the detection of malignancy in the contralateral lobe in patients undergoing completion surgery.

Methods

A retrospective observational study was conducted involving patients who had differentiated thyroid cancer found at diagnostic hemithyroidectomy between 1 December 2013 and 31 December 2016.

Results

Of 105 patients, 74 underwent completion thyroidectomy. Thirty-five per cent of these patients had malignancy identified in the contralateral lobe, the majority were unsuspected sonographically. Of 31 hemithyroidectomy patients, 1 had a nodule classified as ‘U3’ (indeterminate) at the first ultrasound surveillance, ultimately identified as incidental papillary microcarcinomas on completion thyroidectomy. There was no other disease recurrence or malignancy at a median of 3.8 years’ follow up.

Conclusion

The findings indicate a limited role for ultrasound follow up of patients with differentiated thyroid cancer treated with hemithyroidectomy alone.

Type
Main Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Owen O'Brien takes responsibility for the integrity of the content of the paper

References

Wiltshire, JJ, Drake, TM, Uttley, L, Balasubramanian, SP. Systematic review of trends in the incidence of thyroid cancer. Thyroid 2016;26:1541–52CrossRefGoogle Scholar
Davies, L, Welch, HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006;295:2164–7CrossRefGoogle ScholarPubMed
Mantinan, B, Rego-Iraeta, A, Larranaga, A, Fluiters, E, Sánchez-Sobrino, P, Garcia-Mayor, RV. Factors influencing the outcome of patients with incidental papillary thyroid microcarcinoma. J Thyroid Res 2012;2012:469397CrossRefGoogle ScholarPubMed
Shaha, AR. Implications of prognostic factors and risk groups in the management of differentiated thyroid cancer. Laryngoscope 2004;114:393402CrossRefGoogle ScholarPubMed
Gibelli, B, Dionisio, R, Ansarin, M. Role of hemithyroidectomy in differentiated thyroid cancer. Curr Opin Otolaryngol Head Neck Surg 2015;23:99106CrossRefGoogle ScholarPubMed
Geron, Y, Benbassat, C, Shteinshneider, M, Koren, S, Or, K, Markus, E et al. Long-term outcome after hemithyroidectomy for papillary thyroid cancer: a comparative study and review of the literature. Cancers (Basel) 2019;11:26CrossRefGoogle Scholar
Matsuzu, K, Sugino, K, Masudo, K, Nagahama, M, Kitagawa, W, Shibuya, H et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J Surg 2014;38:6879CrossRefGoogle Scholar
Vaisman, F, Shaha, A, Fish, S, Tuttle, RM. Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin Endocrinol (Oxf) 2011;75:112–19CrossRefGoogle ScholarPubMed
Vaisman, F, Momesso, D, Bulzico, DA, Pessoa, CHCN, da Cruz, MDG, Dias, F et al. Thyroid lobectomy is associated with excellent clinical outcomes in properly selected differentiated thyroid cancer patients with primary tumours greater than 1 cm. J Thyroid Res 2013;2013:398194CrossRefGoogle Scholar
Nixon, IJ, Ganly, I, Patel, SG, Palmer, FL, Whitcher, MM, Tuttle, RM et al. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery 2012;151:571–9CrossRefGoogle ScholarPubMed
Haugen, BR, Alexander, EK, Bible, KC, Doherty, GM, Mandel, SJ, Nikiforov, YE. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1133CrossRefGoogle ScholarPubMed
Perros, P, Colley, S, Boelaert, K, Evans, C, Evans, RM, Gerrard, GE et al.; British Thyroid Association. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014;81:1122CrossRefGoogle ScholarPubMed
Filetti, S, Durante, C, Hartl, D, Leboulleux, S, Locati, LD, Newbold, K. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow up. Ann Oncol 2019;30:1856–83CrossRefGoogle ScholarPubMed
Momesso, DP, Tuttle, RM. Update on differentiated thyroid cancer staging. Endocrinol Metab Clin North Am 2014;43:401–21CrossRefGoogle ScholarPubMed
Momesso, DP, Vaisman, F, Yang, SP, Bulzico, DA, Corbo, R, Vaisman, M et al. Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. J Clin Endocrinol Metab 2016;101:2692–700CrossRefGoogle ScholarPubMed
NHS Health Research Authority and Medical Research Council. Is my study research? In: http://www.hra-decisiontools.org.uk/research [1 December 2022]Google Scholar
Edge, SB, Byrd, DR, Compton, CC, Fritz, AG, Greene, FL, Trotti, A, eds. AJCC Cancer Staging Manual, 7th edn. New York: Springer, 2010Google ScholarPubMed
Amin, MB, Edge, SB, Greene, FL, Byrd, DR, Brookland, RK, Washington, MK et al., eds. AJCC Cancer Staging Manual, 8th edn. New York: Springer, 2017Google ScholarPubMed
Park, SY, Jung, Y-S, Ryu, CH, Lee, CY, Lee, YJ, Lee, EK et al. Identification of occult tumors by whole-specimen mapping in solitary papillary thyroid carcinoma. Endocr Relat Cancer 2015;22:679–86CrossRefGoogle ScholarPubMed
Lee, IA, Moon, G, Kang, S, Lee, KH, Lee, SM, Kim, JK et al. Predictive factors indicative of hemithyroidectomy and close follow-up versus bilateral total thyroidectomy for aggressive variants of papillary thyroid cancer. Cancers (Basel) 2022;14:2757CrossRefGoogle ScholarPubMed
Chan, S, Karamali, K, Kolodziejczyk, A, Oikonomou, G, Watkinson, J, Paleri, V et al. Systematic review of recurrence rate after hemithyroidectomy for low-risk well-differentiated thyroid cancer. Eur Thyroid J 2020;9:7384CrossRefGoogle ScholarPubMed
Banerjee, M, Wiebel, JL, Guo, C, Gay, B, Haymart, MR. Use of imaging tests after primary treatment of thyroid cancer in the United States: population based retrospective cohort study evaluating death and recurrence. BMJ 2016;354:i3839CrossRefGoogle ScholarPubMed
Yang, SP, Bach, AM, Tuttle, RM, Fish, SA. Serial neck ultrasound is more likely to identify false-positive abnormalities than clinically significant disease in low-risk papillary thyroid cancer patients. Endocrin Pract 2015;21:1372–9CrossRefGoogle ScholarPubMed
Yang, SP, Bach, AM, Tuttle, RM, Fish, SA. Frequent screening with serial neck ultrasound is more likely to identify false-positive abnormalities than clinically significant disease in the surveillance of intermediate risk papillary thyroid cancer patients without suspicious findings on follow-up ultrasound evaluation. J Clin Endocrinol Metab 2015;100:1561–7CrossRefGoogle Scholar
Wang, LY, Roman, BR, Migliacci, JC, Palmer, FL, Tuttle, RM, Shaha, AR et al. Cost-effectiveness analysis of papillary thyroid cancer surveillance. Cancer 2015;121:4132–40CrossRefGoogle ScholarPubMed
Hedman, C, Djärv, T, Strang, P, Lundgren, CI. Determinants of long-term quality of life in patients with differentiated thyroid carcinoma – a population-based cohort study in Sweden. Acta Oncol 2016;55:365–9CrossRefGoogle ScholarPubMed
Harach, HR, Franssila, KO, Wasenius, VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 1985;56:531–83.0.CO;2-3>CrossRefGoogle ScholarPubMed
Lamartina, L, Leboulleux, S, Terroir, M, Hartl, D, Schlumberger, M. An update on the management of low-risk differentiated thyroid cancer. Endocr Relat Cancer 2019;26:R597610CrossRefGoogle ScholarPubMed
Ritter, A, Mizrachi, A, Bachar, G, Vainer, I, Shimon, I, Hirsch, D et al. Detecting recurrence following lobectomy for thyroid cancer: role of thyroglobulin and thyroglobulin antibodies. J Clin Endocrinol Metab 2020;105:e2145–51CrossRefGoogle ScholarPubMed
Park, S, Jeon, MJ, Oh, H-S, Lee, Y-M, Sung, T-Y et al. Changes in serum thyroglobulin levels after lobectomy in patients with low-risk papillary thyroid cancer. Thyroid 2018;28:9971003CrossRefGoogle ScholarPubMed