Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T11:00:38.600Z Has data issue: false hasContentIssue false

Functional magnetic resonance imaging in coronavirus disease 2019 induced olfactory dysfunction

Published online by Cambridge University Press:  05 October 2023

Kamyar Iravani
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
Behzad Malekpour*
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
Alireza Rasekhi
Affiliation:
Medical Imaging Research Center (‘MIRC’), Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Ali Faramarzi
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
Amir Soltaniesmaeili
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
Behnaz Golkhar
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
Farimah Jahanandish
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
Amirhossein Babaei
Affiliation:
Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
*
Corresponding author: Behzad Malekpour; Email: bhzdmlkpr@gmail.com

Abstract

Objective

To evaluate the functional magnetic resonance imaging changes in the olfactory structures of coronavirus disease 2019 patients experiencing olfactory dysfunction.

Methods

This study included patients aged 25–65 years who presented with a sudden loss of smell, confirmed coronavirus disease 2019 infection, and persistent olfactory dysfunction for a minimum of 2 months without any treatment.

Results

Irrespective of the side of brain activation, the analysis of the cumulative maximum diameter of the activation zones revealed significantly lower activation in the upper frontal lobe (p = 0.037) and basal ganglia (p = 0.023) in olfactory dysfunction patients. Irrespective of the side of activation, the analysis of the number of activation points demonstrated significantly lower activation in the upper frontal lobe (p = 0.036) and basal ganglia (p = 0.009) in olfactory dysfunction patients.

Conclusion

Patients with coronavirus-triggered olfactory dysfunction exhibited lower activity in their basal ganglia and upper frontal lobe.

Type
Main Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Behzad Malekpour takes responsibility for the integrity of the content of the paper

References

Babaei, A, Iravani, K, Malekpour, B, Golkhar, B, Soltaniesmaeili, A, Hosseinialhashemi, M. Factors associated with anosmia recovery rate in COVID-19 patients. Laryngoscope Investig Otolaryngol 2021;6:1248–5510.1002/lio2.690CrossRefGoogle ScholarPubMed
Tan, CJ, Tan, BKJ, Tan, XY, Liu, HT, Teo, CB, See, A et al. Neuroradiological basis of COVID-19 olfactory dysfunction: a systematic review and meta-analysis. Laryngoscope 2022;132:1260–7410.1002/lary.30078CrossRefGoogle ScholarPubMed
Pang, KW, Chee, J, Subramaniam, S, Ng, CL. Frequency and clinical utility of olfactory dysfunction in COVID-19: a systematic review and meta-analysis. Curr Allergy Asthma Rep 2020;20:7610.1007/s11882-020-00972-yCrossRefGoogle ScholarPubMed
Duprez, TP, Rombaux, P. Imaging the olfactory tract (cranial nerve #1). European J Radiol 2010;74:288–9810.1016/j.ejrad.2009.05.065CrossRefGoogle Scholar
Miao, X, Paez, AG, Rajan, S, Cao, D, Liu, D, Pantelyat, AY et al. Functional activities detected in the olfactory bulb and associated olfactory regions in the human brain using T2-prepared BOLD functional MRI at 7T. Front Neurosci 2021;15:72344110.3389/fnins.2021.723441CrossRefGoogle ScholarPubMed
Altunisik, E, Baykan, AH, Sahin, S, Aydin, E, Erturk, SM. Quantitative analysis of the olfactory system in COVID-19: an MR imaging study. AJNR Am J Neuroradiol 2021;42:2207–1410.3174/ajnr.A7278CrossRefGoogle ScholarPubMed
Kandemirli, SG, Altundag, A, Yildirim, D, Tekcan Sanli, DE, Saatci, O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol 2021;28:283510.1016/j.acra.2020.10.006CrossRefGoogle ScholarPubMed
Chiu, A, Fischbein, N, Wintermark, M, Zaharchuk, G, Yun, PT, Zeineh, M. COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology 2021;63:147–810.1007/s00234-020-02554-1CrossRefGoogle ScholarPubMed
Kamrava, SK, Jalessi, M, Ghalehbaghi, S, Amini, E, Alizadeh, R, Rafiei, F et al. Validity and reliability of Persian Smell Identification Test. Iran J Otorhinolaryngol 2020;32:6571Google ScholarPubMed
Taherkhani, S, Moztarzadeh, F, Mehdizadeh Seraj, J, Hashemi Nazari, SS, Taherkhani, F, Gharehdaghi, J et al. Iran Smell Identification Test (Iran-SIT): a modified version of the University of Pennsylvania Smell Identification Test (UPSIT) for Iranian population. Chemosens Percept 2015;8:183–9110.1007/s12078-015-9192-9CrossRefGoogle Scholar
Kamrava, SK, Jalessi, M, Ebrahimnejad, S, Ghalehbaghi, S, Amini, E, Asghari, A et al. Evaluation of culturally-familiar odorants for a Persian Smell Identification Test. Iran J Otorhinolaryngol 2018;30:1925Google ScholarPubMed
Ogihara, H, Kobayashi, M, Nishida, K, Kitano, M, Takeuchi, K. Applicability of the cross-culturally modified University of Pennsylvania Smell Identification Test in a Japanese population. Am J Rhinol Allergy 2011;25:404–1010.2500/ajra.2011.25.3658CrossRefGoogle Scholar
Kasiri, H, Rouhani, N, Salehifar, E, Ghazaeian, M, Fallah, S. Mometasone furoate nasal spray in the treatment of patients with COVID-19 olfactory dysfunction: a randomized, double blind clinical trial. Int Immunopharmacol 2021;98:10787110.1016/j.intimp.2021.107871CrossRefGoogle ScholarPubMed
Mueller, A, Rodewald, A, Reden, J, Gerber, J, von Kummer, R, Hummel, T. Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport 2005;16:475–810.1097/00001756-200504040-00011CrossRefGoogle ScholarPubMed
Griffanti, L, Raman, B, Alfaro-Almagro, F, Filippini, N, Cassar, MP, Sheerin, F et al. Adapting the UK Biobank brain imaging protocol and analysis pipeline for the C-MORE multi-organ study of COVID-19 survivors. Front Neurol 2021;12:75328410.3389/fneur.2021.753284CrossRefGoogle ScholarPubMed
Douaud, G, Lee, S, Alfaro-Almagro, F, Arthofer, C, Wang, C, McCarthy, P et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022;604:69770710.1038/s41586-022-04569-5CrossRefGoogle ScholarPubMed
Ismail, II, Gad, KA. Absent blood oxygen level-dependent functional magnetic resonance imaging activation of the orbitofrontal cortex in a patient with persistent cacosmia and cacogeusia after COVID-19 infection. JAMA Neurol 2021;78:609–1010.1001/jamaneurol.2021.0009CrossRefGoogle Scholar
Eliezer, M, Hamel, AL, Houdart, E, Herman, P, Housset, J, Jourdaine, C et al. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology 2020;95:e3145–5210.1212/WNL.0000000000010806CrossRefGoogle Scholar
Yildirim, D, Kandemirli, SG, Tekcan Sanli, DE, Akinci, O, Altundag, A. A comparative olfactory MRI, DTI and fMRI study of COVID-19 related anosmia and post viral olfactory dysfunction. Acad Radiol 2022;29:314110.1016/j.acra.2021.10.019CrossRefGoogle ScholarPubMed
Burulday, V, Sayar, MS, Bayar Muluk, N. Peripheral and central smell regions in COVID-19 positive patients: an MRI evaluation. Acta Radiol 2022;63:1233–4210.1177/02841851211034043CrossRefGoogle ScholarPubMed
Altundag, A, Yıldırım, D, Tekcan Sanli, DE, Cayonu, M, Kandemirli, SG, Sanli, AN et al. Olfactory cleft measurements and COVID-19-related anosmia. Otolaryngol Head Neck Surg 2021;164:1337–4410.1177/0194599820965920CrossRefGoogle ScholarPubMed
Frosolini, A, Parrino, D, Fabbris, C, Fantin, F, Inches, I, Invitto, S et al. Magnetic resonance imaging confirmed olfactory bulb reduction in long COVID-19: literature review and case series. Brain Sci 2022;12:43010.3390/brainsci12040430CrossRefGoogle ScholarPubMed
Laurendon, T, Radulesco, T, Mugnier, J, Gérault, M, Chagnaud, C, El Ahmadi, AA et al. Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology 2020;95:224–510.1212/WNL.0000000000009850CrossRefGoogle ScholarPubMed
Lu, Y, Li, X, Geng, D, Mei, N, Wu, PY, Huang, CC et al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 2020;25:10048410.1016/j.eclinm.2020.100484CrossRefGoogle ScholarPubMed
Mohammadi, S, Gouravani, M, Salehi, MA, Harandi, H, Moosaie, F, Dehghani Firouzabadi, F et al. Olfactory system measurements in COVID-19: a systematic review and meta-analysis. Neuroradiology 2023;65:253910.1007/s00234-022-03014-8CrossRefGoogle ScholarPubMed