Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-07T23:09:27.290Z Has data issue: false hasContentIssue false

Glycoconjugates in the human fetal endolymphatic sac as detected by lectins

Published online by Cambridge University Press:  29 June 2007

Hiroshi Yamashita*
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
Dan Bagger-Sjöbäck
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
Jan Wersäll
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
Toru Sekitani
Affiliation:
Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Japan.
*
Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755, Japan.

Abstract

The distribution of glycoconjugates in the 11 to 16 weeks old human fetal endolymphatic sac (ES) was analyzed using six biotinylated lectins; Wheat germ agglutinin (WGA), Abrusprecatorius agglutinin (APA), Ulexeuropaeus agglutinin I (UEA-I), Ricinus communis agglutinin 120 (RCA120), Helixpomatia agglutinin (HPA), Concanavalin A (ConA). In the 11 week old human fetus, fluorescent reactions with WGA, APA, RCA120 and ConA were detected in the ES. There was almost no reaction with HPA and UEA-I. In the 14 week old human fetus, however.fluorescent reactions with HPA and UEA-I appeared. This result suggests that the presence of glycoconjugates changes during the maturation process of the ES. Glycoconjugates detected with HPA were related to the epithelial cell elements of the ES epithelium. The reaction with UEA-I suggests that the stainable substance present in the ES lumen may be secreted locally by the ES itself.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altermatt, H.J.,Gebbers, J.O., Arnold, W., Laissuc, J. A. (1990 a) The epithelium of the human endolymphatic sac: Immunohistochemical characterization. ORL, 52: 113120.CrossRefGoogle ScholarPubMed
Altermatt, H. J., Gebbers, J. O., Müller, C., Arnold, W., Laissue, J. A. (1990 b) Human endolymphatic sac: Evidence for a role in inner car immune defence. ORL, 52: 143148.CrossRefGoogle Scholar
Anniko, M., Thornell, L. E., Ramaekers, F. C. S., Stigbrand, T. (1989) Cytokeratin diversity in epithelial of the human inner ear. Acta Otolaryngologica, 108: 385396.CrossRefGoogle Scholar
Barbara, M., Takumida, M., Bagger-Sjöbäck, D., Nilsson, J., Rask-Andersen, H. (1989) Turnover of sulphur compounds in the endolymphatic sac. An autoradiographic study in the mongolian gerbil. ORL, 51: 17.CrossRefGoogle ScholarPubMed
Bagger-Sjöbäck, D. (1991) Embryology of the human endolymphatic duct and sac. ORL, 53: 6167.CrossRefGoogle ScholarPubMed
Erwall, C., Takumida, M., Bagger-Sjöbäck, D., Rask-Andersen, H., Wroblewski, J. (1989) Uptake of radioactive sulphur in the endolymphatic sac: An autoradiographic study. Acta Otolaryngologica, 107: 6370.CrossRefGoogle ScholarPubMed
Gil-Loyzaga, P., Raymond, J., Gabrion, J. (1985 a) Carbohydrates detected by lectins in the vestibular organ. Hearing Research, 18: 269272.CrossRefGoogle ScholarPubMed
Gil-Loyzaga, P., Gabrion, J., Uziel, A. (1985 b) Lectindemonstrate the presence of carbohydrates in the tectorial membrane of mammalian cochlea. Hearing Research, 20: 18.CrossRefGoogle Scholar
Ishibe, T., Yoo, T. J. (1990) Type II collagen distribution in the monkey ear. American Journal of Otology, 11: 3338.Google ScholarPubMed
Lim, D. J. (1984) The development and structure of the otoconia. In Ultrastructural atlasof the inner ear (Friedmann, I., Ballantyne, J., eds). Butterworth & Co: London, p. 245269.Google Scholar
Lotan, R. (1979) Qualitative and quantitative aspects of labelling cell surface carbohydrates using lectins as probes. Scanning Electron Microscopy, 3: 549564.Google Scholar
Rueda, J., Lim, D. J. (1988) Possible transient stereociliary adhesion molecules expressed during cochlear development: A preliminary study. In Glycoconjugates in medicine. Professional Postgraduate Services, Tokyo, p 338350.Google Scholar
Takumida, M., Bagger-Sjöbäck, D., Rask-Andersen, H. (1988) Carbohydrate cytochemistry of the endolymphatic sac. Acta Otolaryngologica, 106: 417427.CrossRefGoogle ScholarPubMed
Takumida, M., Barbara, M., Bagger-Sjöbäck, D., Rask-Andersen, H. (1989) Lectin detection of carbohydrates in the endolymphatic sac. Archives of Otorhinolaryngology, 246: 8993.CrossRefGoogle ScholarPubMed
Teichmann, I., Vigh, B., Aros, B. (1964) Histochemical studies on Gomori-positive substances. I. Examination of the Gomori-positive substance in the endolymphatic sac of the rat. Acta Biologica Academiae Scientarum Hungaricae, 14: 293300.Google ScholarPubMed
Tomiyama, S., Harris, J. P. (1986) The endolymphatic sac: Its importance in inner ear immune responses. Laryngoscope, 96: 685691.CrossRefGoogle ScholarPubMed
Tomiyama, S., Harris, J. P. (1987) The role of the endolymphatic sac in inner ear immunology. Acta Otolaryngologica, 103: 182188.CrossRefGoogle Scholar
Yamashita, H., Sekitani, T., Noguchi, T., Kido, T., Masuda, M. (1989) Histochemical studies of the vestibular nerve system in the developing chick embryo-Glycoconjugates in the vestibular end organs. Acta Otolaryngologica, Supplement 468: 3539.CrossRefGoogle ScholarPubMed