Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-16T04:58:00.506Z Has data issue: false hasContentIssue false

Ag : Sb and Sb : Ag implantations into high purity silica

Published online by Cambridge University Press:  31 January 2011

T. S. Anderson
Affiliation:
Department of Applied and Engineering Science, Vanderbilt University, Nashville, Tennessee 37235
R. H. Magruder III
Affiliation:
Department of Applied and Engineering Science, Vanderbilt University, Nashville, Tennessee 37235
D. L. Kinser
Affiliation:
Department of Applied and Engineering Science, Vanderbilt University, Nashville, Tennessee 37235
J. E. Wittig
Affiliation:
Department of Applied and Engineering Science, Vanderbilt University, Nashville, Tennessee 37235
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Thomas
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Silica composites containing nanometer dimension colloids have been fabricated by implantation of Ag ions followed by Sb ions, and by implantation of Sb ions followed by Ag ions. Doses for the sequential element implantations were in ratios of 9 : 3 Ag : Sb and 3 : 9 Sb : Ag with the total dose held constant at 12 × 1016 ions/cm2. Energies of implantation were 305 keV for the Ag ions and 320 keV for the Sb ions. Single element colloids were also fabricated by implantation of Ag or Sb using the same nominal dose and implantation energy of the sequential implantations. Approximately spherical particles were formed in all implanted samples. Microstructures of the nanoclusters in the various samples were markedly different. Selected area diffraction techniques revealed that alloyed phases of Ag–Sb were formed in some of the sequential implantations. The microstructure and the optical response of the nanocluster glass composites were found to be strongly dependent upon the order of the ion species implanted. The optical spectra of the 3 : 9 Sb : Ag sample displays two resonance peaks indicative of a Ag resonance peak and a resonance peak of an alloyed phase of Ag–Sb. Optical spectra for the 9 : 3 Ag : Sb sample displays two broad absorption peaks indicative of coated particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arnold, G. W. and Borders, J. A., J. Appl. Phys. 48, 14881496 (1977).CrossRefGoogle Scholar
2.Magruder, R. H., III Haglund, R. F., Yang, L., White, C. W., Yang, Lina, Dorsinville, R., and Alfano, R. R., J. Appl. Phys. Lett. 62, 17301732 (1993).CrossRefGoogle Scholar
3.Whichard, G., Hosono, H., Weeks, R. A., Zuhr, R. A., and Magruder, R. H. III, J. Appl. Phys. 67, 75267530 (1990).CrossRefGoogle Scholar
4.Takeda, Y., Hioki, T., Mohohiro, T., Noda, S., and Kurauchi, T., Nucl. Instrum. Methods B 91, 515519 (1994).CrossRefGoogle Scholar
5.Pan, Z., Morgan, S. H., Henderson, D. O., Park, S., Weeks, R. A., Magruder, R. H. III, andZuhr, R. A., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R. J., Holland, O. W., Jones, K. S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), pp. 469474.Google Scholar
6.Flytzanis, C., Hache, F., Klein, M. C., Ricard, D., and Roussignol, P. H., Progress in Optics, edited by Wolf, E. (Amsterdam: North Holland, Amsterdam, 1991), pp. 321411.Google Scholar
7.Bloemer, M. J., Haus, J. W., and Ashley, P. R., J. Opt. Soc. Am. B 7, 790795 (1990).CrossRefGoogle Scholar
8.Mazzoldi, P., Arnold, G. W., Bertoncello, G., and Gonella, F., Nucl. Instrum. Methods B 91, 478492 (1994).CrossRefGoogle Scholar
9.White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. III, and Osborne, D. H., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R. J., Holland, O. W., Jones, K. S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), pp. 499505.Google Scholar
10.Magruder, R. H. III, Haglund, R. F., Yang, L., Wittig, J. E., and Zuhr, R. A., J. Appl. Phys. 76, 708715 (1994).CrossRefGoogle Scholar
11.Wood, R. A., Townsend, P. D., Skelland, N. D., Hole, D. E., Barton, J., and Afonso, C. N., J. Appl. Phys. 74, 57545756 (1993).CrossRefGoogle Scholar
12.Magruder, R. H., III Anderson, T. S., Zuhr, R. A., and Thomas, D. K., Nucl. Instrum. Methods B 108, 305 (1996).CrossRefGoogle Scholar
13. Thomas Reed, B., Free Energy of Formation of Binary Compounds (MIT Press, Cambridge, MA, 1971), pp. 79.Google Scholar
14.Hosono, H., Jpn. J. Appl. Phys. 32, 38923894 (1993).CrossRefGoogle Scholar
15.Townsend, P. D., Rep. Prog. Phys. 50, 501558 (1987).CrossRefGoogle Scholar
16.Diffusion Data (Diffusion Information Center, Cleveland, OH, 1967), Vol. 1 (2), pp. 57.Google Scholar
17.Diffusion Data (Diffusion Information Center, Cleveland, OH, 1967), Vol. 2 (3), pp. 302303.Google Scholar
18.Arnold, G. W. and Mazzoldi, P., Ion Beam Modification of Glasses, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987), pp. 195222.Google Scholar
19.Weeks, R. A., Materials Science and Technology, edited by Zarzycki, J. (VCH, Weinheim, 1991), pp. 331373.Google Scholar
20.Mie, G., Ann. Phys. 25, 377445 (1908).CrossRefGoogle Scholar
21.Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983), pp. 325380.Google Scholar
22.Kreibig, U. and Genzel, L., Surf. Sci. 156, 678700 (1985).CrossRefGoogle Scholar
23.Creighton, J. Alan and Eadon, D. G., Chem. Soc. Faraday Trans. 87, 38813891 (1991).CrossRefGoogle Scholar
24.Anderson, T. S., Magruder, R. H. III, Zuhr, R. A., and Wittig, J. E., J. Electron. Mater. 25, 2733 (1996).CrossRefGoogle Scholar
25.Neeves, A. E. and Birnboim, M. H., J. Opt. Soc. Am. B 6 (4), 787796 (1989).CrossRefGoogle Scholar