Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T17:07:49.690Z Has data issue: false hasContentIssue false

Aligned gadolinium barium copper oxide thick films formed by in situ crystallization in a magnetic field

Published online by Cambridge University Press:  03 March 2011

Joanna McKittrick
Affiliation:
Materials Science Program, University of California–San Diego, La Jolla, California 92093
Ramiro Contreras
Affiliation:
Materials Science Program, University of California–San Diego, La Jolla, California 92093
Dennis Clougherty
Affiliation:
Department of Physics, University of Vermont, Burlington, Vermont 05405
Get access

Abstract

Gd-1:2:3 films were synthesized from acetate precursors and spun-on to polycrystalline substrates of yttria-stabilized zirconia. The substrates were fired in air at 500 °C in between each applied coat. After applying 10–30 coats, they were crystallized by heating to 900 °C in Ar or O2 with or without the application of a 1 T magnetic field. The applied magnetic field was found to produce c-axis alignment for films <4 μm. Annealing in argon produced alignment, but the effect was less pronounced than annealing in oxygen. Substrates with films > 20 μm were not aligned for either environment.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takita, K., Akinaga, H., Katoh, H., Uchino, T., Ishigaki, T., and Asano, H., Jpn. J. Appl. Phys. 26, L1323 (1987).CrossRefGoogle Scholar
2Grader, G.S., O'Bryan, H.M., and Rhodes, W. W., Appl. Phys. Lett. 52, 1831 (1988).CrossRefGoogle Scholar
3Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. van, Kammlott, G. W., Fastnacht, R.A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
4Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2864 (1987).CrossRefGoogle Scholar
5Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69, 6569-6585 (1991).CrossRefGoogle Scholar
6Phillips, J.M., Siegal, M. P., Hou, S.Y., Tiefel, T. H., and Marshall, J. H., presented at the Spring Meeting of the Materials Research Society, San Francisco, CA, May 1992.Google Scholar
7Nagata, H., Min, E., Aihara, M., Itoh, T., and Takai, H., Phys. C 161, 66-70 (1989).CrossRefGoogle Scholar
8Farrell, D. E., Chandrasekhar, B. S., Guire, M. R. De, and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
9Ferreira, J. M., Maple, M. B., Zhou, H., Hake, R. R., Lee, B. W., Seaman, C. L., Kuric, M. V., and Guertin, R. P., Appl. Phys. A 47, 105-110 (1988).CrossRefGoogle Scholar
10Arendt, R. H., Gaddipati, A. R., Garbauskas, M. F., Hall, E. L., Hart, H. R., Lay, K. W., Livingston, J. D., Luborsky, F. E., and Schilling, L. L., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), pp. 203-208.Google Scholar
11Zhang, X., Wang, S., Zhang, J., Zhang, B., Hidalgo, R., Markiewicz, R. S., and Giessen, B. C., Mater. Lett. 14, 193-197 (1992).Google Scholar
12Kumagai, T., Kundo, W., Yodota, H., Minamiue, H., and Mizuta, S., Chem. Lett. 3, 551 (1988).CrossRefGoogle Scholar
13Chiang, Y-M., Furcone, S., Ikeda, J., and Rudman, D., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), pp. 307-310.Google Scholar
14Cooper, E., Frisch, M., Giess, E., Gupta, A., Hussey, B., O'Sullivan, E., Raider, S., and Scilla, G., in High-Temperature Superconductors, edited by Brodsky, M.B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 165.Google Scholar
15Paul, D. McK., Mook, H. A., Hewat, A.W., Sales, B. C., Boatner, L.A., Thompson, J. R., and Mostoller, M., Phys. Rev. B 37, 2341 (1988).CrossRefGoogle Scholar
16Livingston, J.D., Hart, H. R., and Wolf, W. P., J. Appl. Phys. 64, 5806 (1988).CrossRefGoogle Scholar
17Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Dover, New York).Google Scholar
18Markert, J.T., Dalichaouch, Y., and Maple, M. B., in Physical Properties of High Temperature Superconductors I, edited by Ginsberg, D. M. (World Scientific, Singapore, 1989).Google Scholar
19Landau, L. and Lifshitz, E. M., Theory of Elasticity (Pergamon Press, Oxford, 1986).Google Scholar
20Chu, C-T. and Dunn, B., J. Am. Ceram. Soc. 70, 375-377 (1987).CrossRefGoogle Scholar
21Chan, N., Shi, D., and Goretta, K., J. Appl. Phys. 66 (6), 2485-2488 (1989).CrossRefGoogle Scholar