Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T22:08:44.608Z Has data issue: false hasContentIssue false

An atom probe tomography investigation of Ti–MoS2 and MoS2–Sb2O3–Au films

Published online by Cambridge University Press:  21 February 2017

Harpal Singh
Affiliation:
Presently at Sentient Science Corporation, Buffalo, NY 14202; and Timken Engineered Surfaces Laboratory, The University of Akron, Akron, OH 44325, USA
Kalyan C. Mutyala
Affiliation:
Timken Engineered Surfaces Laboratory, The University of Akron, Akron, OH 44325, USA
Ryan D. Evans
Affiliation:
The Timken Company, North-Canton, OH 44720, USA
Gary L. Doll*
Affiliation:
Timken Engineered Surfaces Laboratory, The University of Akron, Akron, OH 44325, USA
*
a) Address all correspondence to this author. e-mail: gd27@uakron.edu
Get access

Abstract

Atom probe tomography and transmission electron microscopy are used to analyze magnetron-sputtered MoS2 films containing Ti and Au/Sb2O3 as a model system for tribological coatings. Transmission electron microscopy characterization showed that the Ti–MoS2 film is dense and featureless whereas Sb2O3/Au–MoS2 film is less dense and have columnar morphology. Three-dimensional atom probe reconstructions revealed that the Ti–MoS2 films have a homogeneous composition and contain about 15 at.% Ti, which is uniformly distributed throughout the MoS2 matrix without any evidence of Ti precipitation. Sb2O3/Au–MoS2 films also showed homogeneous distribution of Sb2O3 throughout the MoS2 matrix and the presence of Au-rich precipitates. The complementary techniques of atom probe tomography and transmission electron microscopy indicate that Ti and Sb2O3 incorporation in the deposition of MoS2 produces amorphous microstructures, whereas the addition of Au forms nano-sized and well-dispersed precipitates.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Eric A. Stach

References

REFERENCES

Scharf, T.W. and Prasad, S.V.: Solid lubricants: A review. J. Mater. Sci. 48, 511531 (2013).CrossRefGoogle Scholar
Scharf, T.W., Kotula, P.G., and Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 41004109 (2010).Google Scholar
Singh, H., Mutyala, K.C., Mohseni, H., Scharf, T.W., Evans, R.D., and Doll, G.L.: Tribological performance and coating characteristics of sputter deposited Ti doped MoS2 in rolling and sliding contact. Tribol. Trans. 58, 767777 (2015).Google Scholar
Roberts, E.W.: Space tribology: Its role in spacecraft mechanisms. J. Phys. D: Appl. Phys. 45, 503001 (2012).Google Scholar
Stupp, B.C., Stupp, C., Plating, H., and Francisco, S.: Synergestic effects of metals Co-sputtered with MoS2*. Thin Solid Films 84, 257266 (1981).Google Scholar
Fox, V., Renevier, N., Teer, D., Hampshire, J., and Rigato, V.: The structure of tribologically improved MoS2–metal composite coatings and their industrial applications. Surf. Coat. Technol. 116–119, 492497 (1999).Google Scholar
Singh, H., Mutyala, K.C., Evans, R.D., and Doll, G.L.: An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surf. Coat. Technol. 284, 281289 (2015).Google Scholar
Renevier, N.M.U., Fox, V.C., Teer, D.G., and Hampshire, J.: Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Technol. 127, 2437 (2000).Google Scholar
Hsu, W.K., Zhu, Y.Q., Yao, N., Firth, S., Clark, R.J.H., Kroto, H.W., and Walton, D.R.M.: Titanium-doped molybdenum disulfide nanostructures. Adv. Funct. Mater. 11, 6974 (2001).Google Scholar
Miller, M.K. and Forbes, R.G.: Atom probe tomography. Mater. Charact. 60, 461469 (2009).Google Scholar
Seidman, D.N.: Three-dimensional atom-probe tomography: Advances and applications. Annu. Rev. Mater. Res. 37, 127158 (2007).CrossRefGoogle Scholar
Kelly, T.F. and Miller, M.K.: Atom probe tomography. Rev. Sci. Instrum. 78, 31101 (2007).CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.: Atom probe crystallography. Mater. Today 15, 378386 (2012).Google Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D., and Gorman, B.P.: Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681727 (2007).Google Scholar
Scharf, T.W., Romanes, M.C., Mahdak, K.C., Hwang, J.Y., Banerjee, R., Evans, R.D., and Doll, G.L.: Atomic-scale structure and composition of tungsten carbide reinforced diamondlike carbon films. Appl. Phys. Lett. 93, 03 (2008).Google Scholar
Strondl, C.G.C.: Nanocomposite WC:H Diamond-like Carbon Coatings. PhD Thesis (Groningen University Press, Groningen, 2007).Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139 (2007).CrossRefGoogle ScholarPubMed
Miller, M.K. and Russell, K.F.: Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107, 761766 (2007).Google Scholar
Bichsel, R., Buffat, P., and Levy, F.: Correlation between process conditions, chemical composition and morphology of MoS2 films prepared by RF planar magnetron sputtering. Appl. Phys. Lett. 19, 15751585 (1986).Google Scholar
Scharf, T.W., Goeke, R.S., Kotula, P.G., and Prasad, S.V.: Synthesis of Au–MoS(2) nanocomposites: Thermal and friction-induced changes to the structure. ACS Appl. Mater. Interfaces 5, 1176211767 (2013).CrossRefGoogle ScholarPubMed
Lince, J.R., Hilton, M.R., and Bommannavar, A.S.: Oxygen substitution in sputter-deposited MoS2 films studied by extended X-ray absorption fine-structure, X-ray photoelectron-spectroscopy and X-ray-diffraction. Surf. Coat. Technol. 43–4, 640651 (1990).Google Scholar
Scharf, T.W., Diercks, D.R., Gorman, B.P., Prasad, S.V., and Dugger, M.T.: Atomic layer deposition of tungsten disulphide solid lubricant nanocomposite coatings on rolling element bearings. Tribol. Trans. 52, 284292 (2009).CrossRefGoogle Scholar
Centers, P.W.: The role of oxide and sulfide additions in solid lubricant compacts. Tribol. Trans. 31, 149156 (1988).CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., and Blavette, D.: Trajectory overlaps and local magnification in three-dimensional atom probe. Appl. Phys. Lett. 76, 3127 (2000).Google Scholar
Müller, C.M., Sologubenko, A.S., Gerstl, S.S.A., and Spolenak, R.: On spinodal decomposition in Cu–34 at.% Ta thin films—An atom probe tomography and transmission electron microscopy study. Acta Mater. 89, 181192 (2015).CrossRefGoogle Scholar
Scharf, T.W., Rajendran, A., Banerjee, R., and Sequeda, F.: Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti–WS2) nanocomposite thin films. Thin Solid Films 517, 56665675 (2009).Google Scholar