Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T10:34:22.295Z Has data issue: false hasContentIssue false

Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling

Published online by Cambridge University Press:  03 March 2011

R. Schwaiger
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
O. Kraft
Affiliation:
Institut für Materialforschung II, Forschungszentrum Karlsruhe, and Institut für Zuverlässigkeit von Bauteilen und Systemen, Universität Karlsruhe, Karlsruhe, Germany
Get access

Abstract

A comprehensive study was undertaken to identify the extent to which the mechanical properties of thin metal films on substrates could be determined quantitatively from instrumented sharp indentation. The mechanical behavior of thin Cu films on substrates was investigated using three different methods: nanoindentation, cantilever microbeam deflection, and microtensile testing. Finite element calculations of the nanoindentation and microbeam deflection experiments were conducted to extract yield strength and hardening modulus. Systematic experiments were performed to investigate the consistency of the different experimental techniques. The mechanical behavior of the Cu films was observed to depend on the film thickness. However, the results from finite element modeling of nanoindentation and microbeam deflection are quite different. In both cases, unique solutions for yield strength and hardening modulus were found. This is particularly noteworthy for the nanoindentation experiments; it is argued that the substrate destroys the self-similarity that is present during indentation of bulk material using a Berkovich tip. Microbeam deflection experiments seem to be more sensitive to the elastic–plastic transition, whereas the nanoindentation results describe the mechanical behavior at larger plastic strains. This is corroborated by microtensile tests.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brotzen, F.R., Int. Mater. Rev. 39 24 (1994).CrossRefGoogle Scholar
2.Kraft, O. and Volkert, C., Adv. Eng. Mater. 3 99 (2001).3.0.CO;2-2>CrossRefGoogle Scholar
3.Nix, W.D., Metall. Trans. A 20 2217 (1989).CrossRefGoogle Scholar
4.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
5.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
6.Giannakopoulos, A.E. and Suresh, S., Scr. Mater. 40 1191 (1999).CrossRefGoogle Scholar
7.Bhattacharya, A.K. and Nix, W.D., Int. J. Solids Struct. 24 881 (1988).CrossRefGoogle Scholar
8.Laursen, T.A. and Simo, J.C., J. Mater. Res. 7 618 (1992).CrossRefGoogle Scholar
9.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S.Acta Mater. 49 3899 (2001).CrossRefGoogle Scholar
10.Cheng, Y-T. and Cheng, C-M., Philos. Mag. Lett. 77 39 (1998).CrossRefGoogle Scholar
11.Cheng, Y-T. and Cheng, C-M., Surf. Coat. Technol. 133–134 417 (2000).CrossRefGoogle Scholar
12.Huber, N., Nix, W.D. and Gao, H., Proc. R. Soc. (London) A 458 1593 (2002).CrossRefGoogle Scholar
13.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 14 3493 (1999).CrossRefGoogle Scholar
14.Kraft, O., Schwaiger, R. and Nix, W.D. in Microelectromechanical Structures for Materials Research, edited by Brown, S., Gilbert, J., Guckel, H., Howe, R., Johnson, G., Krulevitch, P., and Muhlstein, C. (Mater. Res. Soc. Symp. Proc. 518, Warrendale, PA, 1998), p. 39.Google Scholar
15.Weihs, T.P., Hong, S., Bravman, J.C. and Nix, W.D., J. Mater. Res. 3 931 (1988).CrossRefGoogle Scholar
16.Baker, S.P. and Nix, W.D., J. Mater. Res. 9 3131 (1994).CrossRefGoogle Scholar
17.Florando, J.N. and Nix, W.D. in Dislocations and Deforma-tion Mechanisms in Thin Films and Small Structures, edited by Kraft, O., Schwarz, K., Baker, S.P., Freund, L.B., and Hull, R. (Mater. Res. Soc. Symp. Proc. 673, Warrendale, PA, 2001), p. 1.9.1.Google Scholar
18.Weihs, T.P., Hong, S., Bravman, J.C. and Nix, W.D. in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smiths, D.A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 87.Google Scholar
19.Schwaiger, R. and Kraft, O., Acta Mater. 51 195 (2003).CrossRefGoogle Scholar
20.Hong, S., Weihs, T.P., Bravman, J.C. and Nix, W.D. in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smiths, D.A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 93.Google Scholar
21.Kuschke, W-M., Kretschmann, A. and Keller, R-M., J. Mater. Res. 13 2962 (1998).CrossRefGoogle Scholar
22.Lucas, B.N. and Oliver, W.C., Metall. Mater. Trans. A 30 601 (1999).CrossRefGoogle Scholar
23.Hommel, M., Kraft, O. and Arzt, E., J. Mater. Res. 14 2373 (1999).CrossRefGoogle Scholar
24.Hommel, M. and Kraft, O., Acta Mater. 49 3935 (2001).CrossRefGoogle Scholar
25.Lawn, B.Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, MA, 1993)Google Scholar
26.CRC Handbook of Chemistry and Physics, 65th ed., edited by Weast, R.C. (CRC Press, Boca Raton, FL, 1984).Google Scholar
27.Courtney, T.H.Mechanical Behavior of Materials, 2nd ed. (McGraw-Hill, New York, 2000).Google Scholar
28.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids 42 1223 (1994).CrossRefGoogle Scholar
29.Steer, T.J., Möbus, G., Kraft, O., Wagner, T. and Inkson, B.J., Thin Solid Films 413 147 (2002).CrossRefGoogle Scholar
30.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46 411 (1998).CrossRefGoogle Scholar
31.Keller, R-M., Baker, S.P. and Arzt, E., J. Mater. Res. 13 1307 (1998).CrossRefGoogle Scholar
32.Shen, Y-L., Suresh, S., He, M.Y., Bagchi, A., Kienzle, O., Rühle, M. and Evans, A.G., J. Mater. Res. 13 1928 (1998).CrossRefGoogle Scholar
33.Weihnacht, V. and Brückner, W., Acta Mater. 49 2365 (2001).CrossRefGoogle Scholar
34.Tabor, D., Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).Google Scholar
35.Chaudhri, M.M., Acta Mater. 46 3047 (1998).CrossRefGoogle Scholar