Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T23:51:42.276Z Has data issue: false hasContentIssue false

Atomic-scale simulations of cascade overlap and damage evolution in silicon carbide

Published online by Cambridge University Press:  31 January 2011

F. Gao
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P.O. Box 999, Richland, Washington 99352
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P.O. Box 999, Richland, Washington 99352
Get access

Abstract

In a previous computer-simulation experiment, the accumulation of damage in silicon carbide (SiC) from the overlap of 10 keV Si displacement cascades at 200 K was investigated, and the damage states produced following each cascade were archived for further analysis. In the current study, interstitial clustering, system energy, and volume changes are investigated as the damage states evolve due to cascade overlap. An amorphous state is achieved at a damage energy density of 27.5 eV/atom (0.28 displacements per atom). At low-dose levels, most defects are produced as isolated Frenkel pairs, with a small number of defect clusters involving only four to six atoms; however, after the overlap of five cascades (0.0125 displacements per atom), the size and number of interstitial clusters increases with increasing dose. The average energy per atom increases linearly with increasing short-range (or chemical) disorder. The volume change exhibits two regimes of linear dependence on system energy and increases more rapidly with dose than either the energy or the disorder, which indicates a significant contribution to swelling of isolated interstitials and antisite defects. The saturation volume change for the cascade-amorphized state in these simulations is 8.2%, which is in reasonable agreement with the experimental value of 10.8% in neutron-irradiated SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gao, F. and Weber, W.J., Phys. Rev. B 63, 054101 (2000).CrossRefGoogle Scholar
Gao, F., Weber, W.J., and Jiang, W., Phys. Rev. B 63, 214106 (2001).CrossRefGoogle Scholar
Devanathan, R., Weber, W.J., and Gao, F., J. Appl. Phys. 90, 2303 (2001).CrossRefGoogle Scholar
Weber, W.J., Yu, N., and Wang, L.M., J. Nucl. Mater. 253, 53 (1998).CrossRefGoogle Scholar
Weber, W.J., Wang, L.M., Yu, N., and Hess, N.J., Mater. Sci. Eng. A 253, 62 (1998).CrossRefGoogle Scholar
Bolse, W., Nucl. Instrum. Methods Phys. Res. B 148, 83 (1999).CrossRefGoogle Scholar
Giancarli, L., Bonal, J.P., Caso, A., Marois, G. Le, Morley, N.B., and Salavy, J.F., Fusion Eng. Des. 41, 165 (1998).CrossRefGoogle Scholar
Kim, B.G., Choi, Y., Lee, J.W., Lee, Y.W., Sohn, D.S., and Kim, G.M., J. Nucl. Mater. 281, 163 (2000).CrossRefGoogle Scholar
Minato, K., Sawa, K., Koya, K., Tomita, T., Ishikawa, A., Baldwin, C.A., Gabbard, W.A., and Malone, C.M., Nucl. Technology 131(1), 36 (2000).CrossRefGoogle Scholar
Lake, J.A., Bennett, R.G., and Kotek, J.F., Sci. Am. 286(1), 73 (2002).CrossRefGoogle Scholar
Inui, H., Mori, H., and Fujita, H., Philos. Mag. B 61, 107 (1990).CrossRefGoogle Scholar
Inui, H., Mori, H., and Sakata, T., Philos. Mag. B 66, 737 (1992).CrossRefGoogle Scholar
Matsunaga, A., Kinoshita, C., Nakai, K., and Tomokiyo, Y., J. Nucl. Mater. 179–181, 457 (1991).CrossRefGoogle Scholar
Snead, L.L. and Hay, J.C., J. Nucl. Mater. 273, 213 (1999).CrossRefGoogle Scholar
Wendler, E., Heft, A., and Wesch, W., Nucl. Instrum. Methods Phys. Res. B 141, 117 (1998).CrossRefGoogle Scholar
Weber, W.J. and Wang, L.M., Nucl. Instrum. Methods Phys. Res. B 106, 298 (1995).CrossRefGoogle Scholar
Weber, W.J., Jiang, W., and Thevuthasan, S., Nucl. Instrum. Methods Phys. Res. B 166–167, 410 (2000).CrossRefGoogle Scholar
Weber, W.J., Jaing, W., and Thevuthasan, S., Nucl. Instr. Meth. Phys. Res. B 175–177, 26 (2001).CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
Weber, W.J., Nucl. Instr. Meth. Phys. Res. B 166–167, 98 (2000).CrossRefGoogle Scholar
Gao, F. and Weber, W.J., Phys. Rev. B 66, 024106 (2002).CrossRefGoogle Scholar
Gao, F. and Weber, W.J., J. Mater. Res. 17, 259 (2002).CrossRefGoogle Scholar
Gao, F., Weber, W.J., and Devanathan, R., Nucl. Instr. Meth. Phys. Res. B 191, 487 (2002).CrossRefGoogle Scholar
Malerba, L. and Perlado, J.M., J. Nucl. Mater. 289, 57 (2001).CrossRefGoogle Scholar
Hobbs, L.W., Sreeram, A.N., Jesurum, C.E., and Berger, B.A., Nucl. Instr. Meth. Phys. Res. B 116, 18 (1996).CrossRefGoogle Scholar
Weber, W.J. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B.P. and Cragnolino, G.A. (Mater. Res. Soc. Symp. Proc., 713, Warrendale, PA 2002), pp. 443454.Google Scholar
Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
Yuan, X. and Hobbs, L.W., Nucl. Instr. Meth. Phys. Res. B 191, 74 (2002).CrossRefGoogle Scholar
Gehlen, P.C. and Cohen, J.B., Phys. Rev. A 139, 844 (1965).CrossRefGoogle Scholar
Heera, V., Stoemenos, J., Ko¨gler, R., and Skorupa, W., J. Appl. Phys. 77, 2999 (1995).CrossRefGoogle Scholar
Nipoti, R., Albertazzi, E., Bianconi, M., Lotti, R., Lulli, G., Cervera, M., and Carnera, A., Appl. Phys. Lett. 70, 3425 (1997).CrossRefGoogle Scholar
Romano, A., Bertolus, M., Defranceschi, M., and Yip, S., Nucl. Instr. Meth. Phys. Res. B 202, 100 (2003).CrossRefGoogle Scholar
Weber, W.J., J. Amer. Ceram. Soc. 76, 1729 (1993).CrossRefGoogle Scholar
Zhang, Y., Weber, W.J., Jiang, W., Ha¨llen, A., Possnert, G., J. Appl. Phys. 91, 6388 (2002).CrossRefGoogle Scholar
Vook, F.L. and Stein, H.J., Radiat. Eff. 2, 23 (1969).CrossRefGoogle Scholar
Weber, W.J., J. Nucl. Mater. 98, 206 (1981).CrossRefGoogle Scholar