Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-11T20:19:00.575Z Has data issue: false hasContentIssue false

Autostoichiometric vapor deposition: Part II. Experiment

Published online by Cambridge University Press:  03 March 2011

Kueir Weei Chour
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Ren Xu
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

An autostoichiometric vapor deposition method is implemented to achieve deposition of stoichiometric LiTaO3 using LiTa(OButn)6 precursor. Precisely stoichiometric LiTaO3 can be grown by this method. A simple low pressure reactor is used to facilitate the autostoichiometric vapor deposition through hydrolysis polycondensation of double alkoxides in the vapor phase. Typical deposition and annealing conditions are described. X-ray diffraction, SEM, and compositional analyses are performed on the films grown on fused silica, Pt, (100) sapphire, and LiNbO3(001). Rocking curve measurements indicated excellent epitaxial growth of LiTaO3 on (100) sapphire. Compositional analysis by measurement of lattice parameters confirmed that the present method can produce high quality stoichiometric LiTaO3. The nonstoichiometry factor for LiTa(OButn)6 is negligible. Mass spectrometric study of the precursor compound LiTa(OButn)6 suggests that the volatile species is Li2Ta2(OButn)12.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xu, R., J. Mater. Res. 10, 25362541 (1995).Google Scholar
2Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978), Chap. 5.Google Scholar
3Mizuuchi, K. and Yamamoto, K., J. Appl. Phys. 72, 5061 (1992).Google Scholar
4Makio, S., Nitanda, F., Ito, K., and Sato, M., Appl. Phys. Lett. 61, 3077 (1992).CrossRefGoogle Scholar
5Chen, F. S., J. Appl. Phys. 40, 3389 (1969).CrossRefGoogle Scholar
6Nassau, K. and Lines, M. E., Appl. Phys. Lett. 41, 533 (1970).Google Scholar
7Miazawa, S. and Iwasaki, H., J. Cryst. Growth 10, 276 (1971).Google Scholar
8Uda, S. and Tiller, W. A., J. Cryst. Growth 121, 155 (1992).Google Scholar
9Tiller, W. A. and Uda, S., J. Cryst. Growth 129, 328 (1993).Google Scholar
10Tiller, W. A. and Uda, S., J. Cryst. Growth 129, 341 (1993).Google Scholar
11Wernberg, A. A., Braunstein, G., Pas-Pujalt, G., Gysling, H. J., and Blanton, T. N., Appl. Phys. Lett. 63, 331 (1993).Google Scholar
12Wernberg, A. A., Braunstein, G., and Gysling, H. J., Appl. Phys. Lett. 63, 2649 (1993).Google Scholar
13Xie, H. and Raj, R., Appl. Phys. Lett. 63, 3146 (1993).Google Scholar
14Barnes, R. L. and Carruthers, J. R., J. Appl. Crystallogr., 395 (1970).Google Scholar
15JCPDS-ICDD card No. 29–836.Google Scholar
16Abrahams, S. C. and Bernstein, J. L., J. Phys. Chem. Solids 28, 1685 (1967).CrossRefGoogle Scholar
17LiTaO3 powder, Puratronic, 99.998%, Cat. No. 10745, Johnson-Matthey Co., Ward Hill, MA.Google Scholar
18Chour, K. W., Wang, G. D., and Xu, R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S.B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), p. 65.Google Scholar
19Wu, Q., Xu, Y., and Mackenzie, J.D., SPIE Proc. 2288 (1994).Google Scholar