Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-06T10:07:03.033Z Has data issue: false hasContentIssue false

Biomimetics: Learning from diamonds

Published online by Cambridge University Press:  31 January 2011

Andrei P. Sommer*
Affiliation:
Institute of Micro and Nanomaterials, University of Ulm, 89081 Ulm, Germany
Dan Zhu
Affiliation:
Institute of Micro and Nanomaterials, University of Ulm, 89081 Ulm, Germany
Ralf-Peter Franke
Affiliation:
Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany
Hans-Joerg Fecht
Affiliation:
Institute of Micro and Nanomaterials, University of Ulm, 89081 Ulm, Germany; and Institute for Nanotechnology, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
*
a)Address all correspondence to this author. e-mail: andrei.sommer@uni-ulm.de
Get access

Abstract

There is increasing observational evidence for an implication of the order of interfacial water layers in biology, for instance in processes of cellular recognition and during first contact events, where cells decide to survive or enter apoptosis. Experimental methods that allow access to the order of interfacial water layers are thus crucial in biomedical engineering. In this study, we show that interfacial water structures can be nondestructively analyzed on the nanocrystalline diamond. Results open the gate to a new chapter in the design of biomaterials inspired by biomimetic principles.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sommer, A.P., Zhu, D., Wiora, M., Fecht, H.J.: The top of the biomimetic triangle. J. Bionic Eng. 5, 91 2008CrossRefGoogle Scholar
2Szent-Györgyi, A.: Biology and pathology of water. Perspect. Biol. Med. 14, 239 1971CrossRefGoogle ScholarPubMed
3Sommer, A.P.: Limits of the impact of gravity on self-organizing nanospheres. J. Phys. Chem. B 108, 8096 2004CrossRefGoogle Scholar
4Sommer, A.P., Franke, R.P.: Modulating the profile of nanoscopic water films with low level laser light. Nano Lett. 3, 19 2003CrossRefGoogle Scholar
5Sommer, A.P., Caron, A., Fecht, H.J.: Tuning nanoscopic water layers on hydrophobic and hydrophilic surfaces with laser light. Langmuir 24, 635 2008CrossRefGoogle ScholarPubMed
6Goertz, M.P., Houston, J.E., Zhu, X.Y.: Hydrophilicity and the viscosity of interfacial water. Langmuir 23, 5491 2007CrossRefGoogle ScholarPubMed
7Jinesh, K.B., Frenken, J.W.M.: Capillary condensation in atomic scale friction: How water acts like a glue. Phys. Rev. Lett. 96, 166103 2006CrossRefGoogle Scholar
8Li, T.D., Gao, J., Szoszkiewicz, R., Landman, U., Riedo, E.: Structured and viscous water in sub-nanometer gaps. Phys. Rev. B: Condens. Matter 75, 115415 2007CrossRefGoogle Scholar
9Sommer, A.P., Pavláth, A.E.: The subaquatic water layer. Cryst. Growth Des. 7, 18 2007CrossRefGoogle Scholar
10Kucheyev, S.O., Biener, J., Tringe, J.W., Wang, Y.M., Mirkarimi, P.B., van Buuren, T., Baker, S.L., Hamza, A.V., Brühne, K., Fecht, H.J.: Ultrathick, low-stress nanostructured diamond films. Appl. Phys. Lett. 86, 221914 2005CrossRefGoogle Scholar
11Gluche, P., Flöter, A., Ertl, S., Fecht, H.J.: The Nano- Micro Interface Wiley-VCH Weinheim 2004 247–262Google Scholar
12Sommer, A.P., Zhu, D., Brühne, K.: Surface conductivity on hydrogen-terminated nanocrystalline diamond: Implication of ordered water layers. Cryst. Growth Des. 7, 2298 2007CrossRefGoogle Scholar
13Sommer, A.P., Zhu, D.: Conductivity of diamonds. Chem. Eng. News 86, 11 2008Google Scholar
14Sommer, A.P., Zhu, D., Försterling, H.D.: Breathing conductivity into diamonds. Science Online 28 (February) 2008Google Scholar
15Chakrapani, V., Angus, J.C., Anderson, A.B., Wolter, S.D., Stoner, B.R., Sumanasekera, G.U.: Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424 2007CrossRefGoogle Scholar
16Nebel, C.E.: Surface-conducting diamond. Science 318, 1391 2007CrossRefGoogle ScholarPubMed
17Landstrass, M.I., Ravi, K.V.: Resistivity of chemical vapour deposited diamond films. Appl. Phys. Lett. 55, 975 1989CrossRefGoogle Scholar
18Angus, J.C., Chakrapani, V., Anderson, A.B., Wolter, S.D., Stoner, B.R., Sumanasekera, G.U.: Response to A.P. Sommer et al.’s E-Letter. Science Online 28 (February) 2008Google Scholar
19Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L.: Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472 2000CrossRefGoogle ScholarPubMed
20Marx, D.: Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. Chem. Phys. Chem 7, 1848 2006CrossRefGoogle Scholar
21Kreuer, K.D.: Proton conductivity: Materials and applications. Chem. Mater. 8, 610 1996CrossRefGoogle Scholar