Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-06T11:28:28.023Z Has data issue: false hasContentIssue false

Continuous microscratch measurements of the practical and true works of adhesion for metal/ceramic systems

Published online by Cambridge University Press:  31 January 2011

S. Venkataraman
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
D. L. Kohlstedt
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455
W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Using a continuous microscratch technique, the adhesion strengths of Pt, Cr, Ti, and Ta2N metallizations to NiO and Al2O3 substrates have been characterized. The practical work of adhesion was determined as a function of both thickness and annealing conditions. For all except the Ta2N films, the practical work of adhesion increases nonlinearly from a few tenths of a J/m2 to several J/m2 as the thickness of the thin film is increased, indicating that a greater amount of plastic work is expended in delaminating thicker films. Further, the practical work of adhesion also increases with increasing annealing temperature, indicating stronger bonding at the interface. In the limit that the film thickness tends to zero, the plastic energy dissipation in the film tends to zero. As a result, the extrapolation to zero thickness yields the true work of adhesion for that system.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shieu, F-S. and Sass, S. L., Acta Metall. Mater. 38, 1653 (1990).CrossRefGoogle Scholar
2.Schneider, A. and Esch, U., Elektrochem, Z.. 50, 268 (1944).Google Scholar
3.Hansen, M., Constitution of Binary Alloys (McGraw Hill, New York, 1958).CrossRefGoogle Scholar
4.Venkataraman, S., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 7, 1126 (1992).CrossRefGoogle Scholar
5.Venkataraman, S., Nelson, J.C., Hsieh, A. J., Kohlstedt, D. L., and Gerberich, W. W., J. Adhesion Sci. Technol. 7, 1279 (1993).CrossRefGoogle Scholar
6.Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
7.Venkataraman, S. K., Ph.D. Thesis, University of Minnesota (1994).Google Scholar
8.Liu, Y-C., Dieckmann, R., and Sass, S. L., Acta Metall. Mater. 38, 2215 (1990).Google Scholar
9.Klomp, J. T., Ceramic Microstructure '86: Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987), p. 307.CrossRefGoogle Scholar
10.Moore, D. F., The Friction and Lubrication of Elastomers (Perga-mon Press, New York, Oxford), p. 67.Google Scholar
11.Moody, N. R., Venkataraman, S., Nelson, J., Worobey, W., and Gerberich, W. W., in Covalent Ceramics II: Non-Oxides, edited by Barron, A. R., Fischman, G. S., Fury, M. A., and Hepp, A. F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 337;Google Scholar
in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 603.Google Scholar
12. Powder Diffraction File, Inorganic Volume, Joint Committee on Powder Diffraction Standards—International Center for Diffraction Data (1992).Google Scholar
13.Venkataraman, S., Gerberich, W. W., and Kohlstedt, D. L., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J.E. Jr, and Børgensen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 621.Google Scholar
14.Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 591.Google Scholar
15.Wang, H-F., Skowronek, C. J., and Gerberich, W. W., Acta Metall. Mater. 41, 2425 (1993).CrossRefGoogle Scholar
16.Liu, Y-C., Sass, S. L., Bai, Q., Kohlstedt, D.L., and Gerberich, W.W., Acta Metall. Mater. 43, 31 (1995).Google Scholar
17.Dalgleish, B. J., Lu, M. C., and Evans, A. G., Acta Metall. 36, 2029 (1988).CrossRefGoogle Scholar
18.Evans, A. J. and Ruhle, M., MRS Bull. 10, 46 (1990).CrossRefGoogle Scholar
19.Cannon, R. M., Ceramic Coatings and Interfaces Workshop, University of Minnesota, June 1994.Google Scholar
20.Agrawal, D. C. and Raj, R., Mater. Sci. Engng. A126, 125 (1990).CrossRefGoogle Scholar
21.Wang, H-F., Ph.D. Thesis, University of Minnesota (1994).Google Scholar
22.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
23.Venkatraman, R. and Bravman, J. C., J. Mater. Res. 7, 2040 (1992).CrossRefGoogle Scholar
24.Ruud, J. A., Josell, D., Spaepen, F., and Greer, A. L., J. Mater. Res. 8, 112 (1993).CrossRefGoogle Scholar
25.Irwin, G., Proc. Soc. Exp. Stress Analysis XVI, 93 (1957).Google Scholar
26.Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40 (suppl.), 5295 (1992).CrossRefGoogle Scholar
27.Evans, A. G. and Hutchinson, J.W., Acta Metall. Mater. 43, 2507 (1995).CrossRefGoogle Scholar
28.de Boer, M. P. and Gerberich, W. W., “Microwedge Indentation of the Thin Film Fine Line—I. Mechanics,” Acta Mater. 44, 3169 (1996).CrossRefGoogle Scholar
29.Benjamin, P. and Weaver, C., Proc. R. Soc., London A252, 418 (1959).Google Scholar
30.Ashcroft, N. W. and Mermin, N. D., Solid State Physics (W. B. Saunders Company, 1976).Google Scholar