Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-07T02:16:28.386Z Has data issue: false hasContentIssue false

Controlled Planar Interface Synthesis by Ultrahigh Vacuum Diffusion Bonding/deposition

Published online by Cambridge University Press:  31 January 2011

M. J. Kim
Affiliation:
Center for Solid State Science, Science and Engineering of Materials, Arizona State University, Tempe, Arizona 85287–1704
R. W. Carpenter
Affiliation:
Center for Solid State Science, Science and Engineering of Materials, Arizona State University, Tempe, Arizona 85287–1704
M. J. Cox
Affiliation:
Center for Solid State Science, Science and Engineering of Materials, Arizona State University, Tempe, Arizona 85287–1704
J. Xu
Affiliation:
Center for Solid State Science, Science and Engineering of Materials, Arizona State University, Tempe, Arizona 85287–1704
Get access

Abstract

An ultrahigh vacuum (UHV) diffusion bonding/deposition instrument was designed and constructed, which can produce homophase and heterophase planar interfaces from a wide array of materials. The interfaces are synthesized in situ by diffusion bonding of two substrates with or without various interfacial layers, at temperatures up to about 1500 °C. Substrate surfaces can be heat treated, ion-beam sputter cleaned, and chemically characterized in situ by Auger electron spectroscopy prior to deposition and/or bonding. Bicrystals can be synthesized by bonding two single-crystal substrates at a specified orientation. Interfacial layers can be deposited by electron beam evaporation and/or sputter deposition in any layered or alloyed combination on the substrates before bonding. The instrument can accommodate cylindrical and/or wafer type specimens whose sizes are sufficient for fracture mechanical testing to measure interface bond strength. A variety of planar interfaces of metals, semiconductors, and ceramics were synthesized. Examples of bonded stainless steel/Ti/stainless steel, Si/Si, and sapphire/sapphire interfaces are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, L.L., Davis, R.F., Liu, R-J., Kim, M.J., and Carpenter, R.W., J. Mater. Res. 14, 1032 (1999).CrossRefGoogle Scholar
2.Smith, L.L., Davis, R.F., Kim, M.J., Carpenter, R.W., and Huang, Y., J. Mater. Res. 12, 2249 (1997).CrossRefGoogle Scholar
3.Smith, L.L., Davis, R.F., Kim, M.J., Carpenter, R.W., and Huang, Y., J. Mater. Res. 11, 2257 (1996).CrossRefGoogle Scholar
4.Das Chowdhury, K., Carpenter, R.W., Braue, W., Liu, J., and Ma, H., J. Am. Ceram. Soc. 78, 2579 (1995).CrossRefGoogle Scholar
5.Porter, L.M., Davis, R.F., Bow, J.S., Kim, M.J., Carpenter, R.W., and Glass, R.C., J. Mater. Res. 10, 668 (1995).CrossRefGoogle Scholar
6.Howe, J.M., in Joining and Adhesion of Advanced Inorganic Materials, edited by Carim, A.H., Schwartz, D.S., and Silberglitt, R.S. (Mater. Res. Soc. Symp. Proc. 314, Pittsburgh, PA, 1993), p. 27.Google Scholar
7.Metal-Ceramic Interfaces, Acta Scr. Metall. Proc. Ser., edited by M. Rühle, A.G. Evans, M.F. Ashby, and J.P. Hirth (Pergamon Press, New York, 1990), Vol. 4.Google Scholar
8.Tong, Q-Y. and Gösele, U., Semiconductor Wafer Bonding: Science and Technology (John Wiley & Sons, New York, 1999).Google Scholar
9.Proc. 4th Int. Symp. Semicond. Wafer Bonding: Science, Technology, and Applications, PV 97–36, edited by U. Gösele, H. Baumgart, T. Abe, C. Hunt, and S. Iyer (The Electrochem. Soc., Pennington, NJ, 1997).Google Scholar
10.Fischmeister, H.F., Elssner, G., Gibbersch, B., Kadow, K-H., Kawa, F., Korn, D., Mader, W., and Turwitt, M., Rev. Sci. Instrum. 64, 234 (1993).CrossRefGoogle Scholar
11.King, Wayne E., Campbell, G.H., Coombs, A.W., Johnson, G.W., Kelly, B.E., Reitz, T.C., Stoner, S.L., Wien, W.L., and Wilson, D.M., in Joining and Adhesion of Advanced Inorganic Materials, edited by Carim, A.H., Schwartz, D.S., and Silberglitt, R.S. (Mater. Res. Soc. Symp. Proc. 314, Pittsburgh, PA, 1993), p. 61.Google Scholar
12.Wan, C. and Dupeux, M., J. Mater. Sci. 28, 5079 (1993).CrossRefGoogle Scholar
13.Hill, A. and Wallach, E.R., Acta Metall. 37, 2425 (1989).CrossRefGoogle Scholar
14.Islam, M.F. and Ridley, N.R., Scr. Mater. 38, 1187 (1998).CrossRefGoogle Scholar
15.Ridley, N., Salehi, M.T., and Piling, J., Mater. Sci. Technol. 8, 791 (1992).CrossRefGoogle Scholar
16.Monsma, D.J., Vlutters, R., Shimatsu, T., Keim, E.G., Mollema, R.H., and Ludder, J.C., IEEE Trans. Magnet. 33, 3495 (1997).CrossRefGoogle Scholar
17.Shimatsu, T., Mollema, R.H., Monsma, D., Keim, E.G., and Ludder, J.C., J. Vac. Sci. Technol. A 16, 2125 (1998).CrossRefGoogle Scholar
18.Weldon, M.K., Chabal, Y.J., Hamann, D.R., Christman, S.B., Chaban, E.E., and Feldman, L.C., J. Vac. Sci. Technol. B 14, 3095 (1996).CrossRefGoogle Scholar
19.Tong, Q-Y., Schmidt, E., Gösele, U., and Reiche, M., Appl. Phys. Lett. 64, 625 (1994).CrossRefGoogle Scholar
20.Ljunberg, K., Soderbarg, A., and Backlund, Y., Appl. Phys. Lett. 62, 1363 (1993).Google Scholar
21.Kim, M.J. and Carpenter, R.W., J. Mater. Res. 5, 347 (1990).CrossRefGoogle Scholar
22.Hobart, K.D., Twigg, M.E., Kub, F.J., and Desmond, C.A., Appl. Phys. Lett. 72, 1095 (1998).CrossRefGoogle Scholar
23.Zaluzec, N.J., Kestel, B.J., and Henriks, D., Microsc. Microanal. 3 (Suppl. 2), 983 (1997).CrossRefGoogle Scholar
24.Gösele, U., Stenzel, H., Martini, T., Steinkirchner, J., Conrad, D., and Scheerschmidt, K., Appl. Phys. Lett. 67, 3614 (1995).CrossRefGoogle Scholar
25.Takagi, H., Maeda, R., Hosada, N., and Suga, T., Jpn. J. Appl. Phys. 38, 1589 (1999).CrossRefGoogle Scholar
26.Shi, F., Elssner, G., Reiche, M., and Gösele, U., Diffus. Defect Data B 47–48, 143 (1996).Google Scholar
27.Braue, W., Carpenter, R.W., and Smith, D.J., J. Mater. Sci. 25, 2949 (1990).CrossRefGoogle Scholar
28.Kopperschmidt, P., Kastner, G., Hesse, D., Gösele, U.M., and Lorenz, M., Appl. Phys. A 64, 211 (1997).CrossRefGoogle Scholar
29.Maszara, W.P., Goetz, G., Caviglia, A., and McKitterick, J.B., J. Appl. Phys. 64, 4943 (1988).CrossRefGoogle Scholar