Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T00:45:32.191Z Has data issue: false hasContentIssue false

Controlled synthesis of quasi-one-dimensional boron nitride nanostructures

Published online by Cambridge University Press:  31 January 2011

Dai-Ming Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Chang Liu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Hui-Ming Cheng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: cliu@imr.ac.cn
Get access

Abstract

A floating catalyst chemical vapor deposition method was developed for the synthesis of quasi-one-dimensional (1D) boron nitride (BN) nanostructures. By carefully tuning the experimental parameters such as growth temperature, floating catalyst concentration, and boron precursor, high quality 1D BN nanostructures including nanotubes, nanobamboos, and nanowires were selectively produced. The microstructures of the obtained 1D BN nanomaterials were characterized, and it was found that the nanostructures are composed of hexagonal BN phase with (002) planes stacking in different manners. A growth mechanism of the BN nanostructures was proposed based on the analysis of their structural characteristics and growth conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Blase, X., Rubio, A., Louie, S.G.Cohen, M.L.: Stability and band-gap constancy of boron-nitride nanotubes. Europhys. Lett. 28, 335 1994CrossRefGoogle Scholar
2Rubio, A., Corkill, J.L.Cohen, M.L.: Theory of graphitic boron-nitride nanotubes. Phys. Rev. B 49, 5081 1994CrossRefGoogle ScholarPubMed
3Powers, M.J., Benjamin, M.C., Porter, L.M., Nemanich, R.J., Davis, R.F., Cuomo, J.J., Doll, G.L.Harris, S.J.: Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 67, 3912 1995CrossRefGoogle Scholar
4Chen, Y., Zou, J., Campbell, S.Caer, G. Le: Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430 2004CrossRefGoogle Scholar
5Nakhmanson, S.M., Calzolari, A., Meunier, V., Bernholc, J.Nardelli, M.B.: Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. B 67, 235406 2003CrossRefGoogle Scholar
6Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G.Zettl, A.: Boron-nitride nanotubes. Science 269, 966 1995Google Scholar
7Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K.Yusa, H.: Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69, 2045 1996CrossRefGoogle Scholar
8Han, W.Q., Bando, Y., Kurashima, K.Sato, T.: Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73, 3085 1998CrossRefGoogle Scholar
9Chen, Y., Gerald, J.D. Fitz, Williams, J.S.Bulcock, S.: Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299, 260 1999CrossRefGoogle Scholar
10Chen, Y., Conway, M., Williams, J.S.Zou, J.: Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res. 17, 1896 2002CrossRefGoogle Scholar
11Zhi, C.Y., Bando, Y., Tan, C.C.Golberg, D.: Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135, 67 2005CrossRefGoogle Scholar
12Chen, Y., Chadderton, L., FitzGerald, J.Williams, J.: A solid-state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74, 2960 1999CrossRefGoogle Scholar
13Ma, R.Z., Bando, Y.Sato, T.: Controlled synthesis of BN nanotubes, nanobamboos, and nanocables. Adv. Mater. 14, 366 2002Google Scholar
14Huo, K.F., Hu, Z., Chen, F., Fu, J.J., Chen, Y., Liu, B.H., Ding, J., Dong, Z.L.White, T.: Synthesis of boron nitride nanowires. Appl. Phys. Lett. 80, 3611 2002CrossRefGoogle Scholar
15Chen, Y.J., Chi, B., Mahon, D.C.Chen, Y.: An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology 17, 2942 2006Google Scholar
16Deepak, F.L., Vinod, C.P., Mukhopadhyay, K., Govindaraj, A.Rao, C.N.R.: Boron nitride nanotubes and nanowires. Chem. Phys. Lett. 353, 345 2002Google Scholar
17Ma, R.Z., Bando, Y., Sato, T., Golberg, D., Zhu, H.W., Xu, C.L.Wu, D.H.: Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. Appl. Phys. Lett. 81, 5225 2002CrossRefGoogle Scholar
18Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 1991CrossRefGoogle Scholar
19Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X.Dresselhaus, M.S.: Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72, 3282 1998CrossRefGoogle Scholar
20Fan, Y.Y., Cheng, H.M., Wei, Y.L., Su, G.Shen, Z.H.: Tailoring the diameters of vapor-grown carbon nanofibers. Carbon 38, 921 2000CrossRefGoogle Scholar
21Celik-Aktas, A., Zuo, J., Stubbins, J., Tang, C.Bando, Y.: Structure and chirality distribution of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 86, 133110 2005CrossRefGoogle Scholar
22Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K.Sato, T.: Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77, 1979 2000CrossRefGoogle Scholar
23Tang, D.M., Liu, C.Cheng, H.M.: Platelet boron nitride nanowires. Nano 1, 65 2006CrossRefGoogle Scholar
24Lourie, O.R., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S.Buhro, W.E.: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808 2000CrossRefGoogle Scholar
25Huo, K.F., Hu, Z., Fu, J.J., Xu, H., Wang, X.Z.Lu, Y.N.: Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe–B nanoparticles with nitrogen/ammonia mixture. J. Phys. Chem. B 107, 11316 2003CrossRefGoogle Scholar
26Ma, R.Z., Bando, Y.Sato, T.: Bamboo-like boron nitride nanotubes. J. Electron Microsc. (Tokyo) 51, S259 2002Google Scholar
27Golberg, D., Bando, Y., Kurashima, K.Sato, T.: MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates. Chem. Phys. Lett. 323, 185 2000CrossRefGoogle Scholar
28Givargizov, E.I.: Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20 1975Google Scholar
29Buffat, P.Borel, J.P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 1976CrossRefGoogle Scholar
30Shi, F.G.: Size-dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307 1994CrossRefGoogle Scholar
31Zhang, X.X., Li, Z.Q., Wen, G.H., Fung, K.K., Chen, J.L.Li, Y.D.: Microstructure and growth of bamboo-shaped carbon nanotubes. Chem. Phys. Lett. 333, 509 2001CrossRefGoogle Scholar