Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T18:11:13.422Z Has data issue: false hasContentIssue false

Correlation of resistance and interfacial reaction of contacts to n-type InP

Published online by Cambridge University Press:  31 January 2011

J. S. Huang
Affiliation:
Agere Systems, Optical Access Division, 2015 W. Chestnut Street, Alhambra, California 91803
C. B. Vartuli
Affiliation:
Agere Systems, 9333 S. John Young Parkway, Orlando, Florida 32819
T. Nguyen
Affiliation:
Agere Systems, Optical Access Division, 2015 W. Chestnut Street, Alhambra, California 91803
N. Bar-Chaim
Affiliation:
Agere Systems, Optical Access Division, 2015 W. Chestnut Street, Alhambra, California 91803
J. Shearer
Affiliation:
Agere Systems, 2525 N. 12th Street, Reading, Pennsylvania 19612
C. Fisher
Affiliation:
Agere Systems, 2525 N. 12th Street, Reading, Pennsylvania 19612
S. Anderson
Affiliation:
Agere Systems, 9333 S. John Young Parkway, Orlando, Florida 32819
Get access

Abstract

Metal contact of compound semiconductors has been extensively studied using various characterization tools. However, there was little work of scanning transmission electron microscopy (STEM) done previously for the study of the InP contact systems. Using STEM and Auger electron spectroscopy analyses, we correlated the resistance with interfacial reactions in the AuGe/Ni/Au/Cr/Au contacts to n-InP. Detailed nanoscale structural and chemical information was uniquely revealed by the STEM compared to other techniques. For the high-resistance samples, little interfacial reaction between n-InP and Au occurred. For the low-resistance samples, significant out-diffusion of P in the Au and Ni layers occurred, forming Au–P and Ni–P metallic compounds. Accumulation of Ge in the Ni layer was also detected. We suggest that Ni–P may be very critical in obtaining low contact resistance for n-InP.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kupal, E., Solid State Electron. 24, 69 (1981).Google Scholar
2.Clausen, T. and Leistiko, O., Microelectron. Eng. 18, 305 (1992).CrossRefGoogle Scholar
3.Fatemi, N.S. and Weizer, V.G., J. Appl. Phys. 77, 5241 (1995).CrossRefGoogle Scholar
4.Cheng, C.L., Goldren, L.A., Miller, B.I., Rentschler, J.A., and Shen, C.C., Electron. Lett. 18, 755 (1982).CrossRefGoogle Scholar
5.Tabatabaie-Alavi, K., Choudhury, A.N.M.M., Slater, N.J., and Fonstad, C.G., Appl. Phys. Lett. 40, 398 (1982).CrossRefGoogle Scholar
6.Katz, A., Thomas, P.M., Chu, S.N.G., Dautremont-Smith, W.C., Sobers, R.G., and Napholtz, S.G., J. Appl. Phys. 67, 884 (1990).CrossRefGoogle Scholar
7.Weizer, V.G. and Fatemi, N.S., J. Appl. Phys. 69, 8253 (1991).CrossRefGoogle Scholar
8.Fatemi, N.S. and Weizer, V.G., J. Appl. Phys. 74, 6740 (1993).CrossRefGoogle Scholar
9.Fatemi, N.S. and Weizer, V.G., J. Appl. Phys. 73, 289 (1993).CrossRefGoogle Scholar
10.Ivey, D.G., Wang, D., Bruce, R., and Knight, G., J. Electron. Mater. 23, 441 (1994).CrossRefGoogle Scholar
11.Bahir, G., Merz, J.L., Ableson, J.R., and Sigmon, T.W., J. Electron. Mater. 16, 257 (1987).CrossRefGoogle Scholar
12.Huang, W.C., Lei, T.F., and Lee, C.L., J. Appl. Phys. 79, 9200 (1996).CrossRefGoogle Scholar
13.Chen, T.R., Chen, P.C., Ungar, J., and Bar-Chaim, N., Electron. Lett. 31, 1344 (1995).CrossRefGoogle Scholar
14.Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B., and Stevie, F.A., in Specimen Preparation for Transmission Electron Microscopy of Materials IV, edited by Anderson, R.M. and Walck, S.D. (Mater. Res. Soc. Symp. Proc. 480, Warrendale, PA, 1997), p. 19.Google Scholar
15.Vartuli, C.B., Stevie, F.A., Giannuzzi, L.A., Shofner, T.L., Purcell, B.M., Irwin, R.B., McKinley, J.M., and Wesson, R.J., Microscopy and Microanalysis 2000 Proceedings (Springer, New York, 2000), p. 536.Google Scholar
16.Huang, J.S., Chen, C., Yeh, C.C., Tu, K.N., Shofner, T.L., Drown, J.L., Irwin, R.B., and Vartuli, C.B., J. Mater. Res. 15, 2387 (2000).CrossRefGoogle Scholar
17.Anderson, D.A., Graham, R.J., and Steeds, J.W., Semicond. Sci. Technol. 3, 63 (1988).CrossRefGoogle Scholar