Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:31:10.095Z Has data issue: false hasContentIssue false

Cyclic fatigue of a mica-containing glass-ceramic at Hertzian contacts

Published online by Cambridge University Press:  03 March 2011

Hongda Cai
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Stevens Marion A. Kalceff
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Bryan M. Hooks
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Kenneth Chyung
Affiliation:
Corning Incorporated, Sullivan Park, Corning, New York 14830
Get access

Abstract

Fatigue damage in a mica-containing glass-ceramic is examined using Hertzian contact tests. For the material in its base glass state, such tests indicate that fatigue occurs solely by chemically enhanced cone crack extension. In the glass-ceramic, fatigue is evident as an expansion of a macroscopic subsurface microfracture zone. Comparative observations of the subsurface damage in static and cyclic loading, and tests in different environments, indicate that the fatigue in the glass-ceramic is mechanical in origin, although it is enhanced by moisture. This result is reinforced by load-point-displacement data, which reveal significant hysteresis in the glass-ceramic but not in the base glass. Flexure tests on Hertz-indented glass-ceramic specimens show only a slight loss of strength, <5%, over 105 cycles. This contrasts with the base glass which, although of higher laboratory strength, is subject to abrupt and severe strength degradation from cone crack pop-in. High magnification examination of the subsurface damage in the glass-ceramic suggests the underlying cause of the mechanical fatigue mechanism to be attrition of frictional tractions at closed microcrack interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cai, H., Stevens Kalceff, M. A., and Lawn, B. R., J. Mater. Res. 9, 762 (1994).CrossRefGoogle Scholar
2Chyung, C. K., Beall, G. H., and Grossman, D. G., in Electron Microscopy and Structure of Materials, edited by Thomas, G., Fulrath, R. M., and Fisher, R. M. (University of California Press, Berkeley, CA, 1972), pp. 11671194.Google Scholar
3Chyung, K., Beall, G. H., and Grossman, D. G., in Proceedings of 10th International Glass Congress, No. 14, edited by Kunugi, M., Tashiro, M., and Saga, N. (The Ceramic Society of Japan, Kyoto, Tokyo, Japan, 1974), pp. 3340.Google Scholar
4Fairbanks, C. J., Lawn, B. R., Cook, R. F., and Mai, Y-W., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1986), Vol. 8, pp. 2337.Google Scholar
5Chyung, K., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1974), Vol. 2, pp. 495508.CrossRefGoogle Scholar
6Guiberteau, F., Padture, N. P., Cai, H., and Lawn, B. R., Philos. Mag. A 68, 10031016 (1993).Google Scholar
7Mikosza, A. G. and Lawn, B. R., J. Appl. Phys. 42, 55405545 (1971).CrossRefGoogle Scholar
8Guiberteau, F., Padture, N. P., and Lawn, B. R., J. Am. Ceram. Soc. (in press).Google Scholar
9Frank, F. C. and Lawn, B. R., Proc. R. Soc. London A299, 291306 (1967).Google Scholar
10Wilshaw, T. R., J. Phys. D: Appl. Phys. 4, 15671581 (1971).Google Scholar
11Lawn, B. R. and Wilshaw, T. R., J. Mater. Sci. 10, 10491081(1975).Google Scholar
12Poloniecki, J. D. and Wilshaw, T. R., Nature Phys. Sci. 229, 226227 (1971).Google Scholar
13Evans, A. G. and Fuller, E. R., Metall. Trans. 5, 2733 (1974).Google Scholar
14Johnson, K. L., Contact Mechanics (Cambridge University Press, London, 1985).CrossRefGoogle Scholar
15Williams, J. S., Lawn, B. R., and Swain, M. V., Phys. Status Solidi A 2, 729 (1970).CrossRefGoogle Scholar
16Cheeseman, G. L. and Lawn, B. R., Phys. Status Solidi A 3, 951958 (1970).CrossRefGoogle Scholar
17Lawn, B. R., Fuller, E. R., and Wiederhorn, S. M., J. Am. Ceram. Soc. 59, 193197 (1976).Google Scholar
18Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
19Lawn, B. R., Wiederhorn, S. M., and Johnson, H., J. Am. Ceram. Soc. 58, 428432 (1975).Google Scholar
20Horii, H. and Nemat-Nasser, S., J. Geophys. Res. 90, 31053125 (1985).Google Scholar
21Ashby, M. F. and Hallam, S. D., Acta Metall. 34, 497510 (1986).Google Scholar
22Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. 42, 16831693 (1994).CrossRefGoogle Scholar
23Jaeger, J. C. and Cook, N. G. W., Fundamentals of Rock Mechanics (Chapman and Hall, London, 1971).Google Scholar
24Suresh, S. and Brockenbrough, J. R., Acta Metall. 36, 14551470 (1988).CrossRefGoogle Scholar
25Suresh, S., Fatigue of Materials (Cambridge University Press, Cambridge, 1991).Google Scholar
26Lawn, B. R., Padture, N. P., Braun, L. M., and Bennison, S. J., J. Am. Ceram. Soc. 76, 22352240 (1993).CrossRefGoogle Scholar
27Padture, N. P., Runyan, J. L., Bennison, S. J., Braun, L. M., and Lawn, B. R., J. Am. Ceram. Soc. 76, 22412247 (1993).Google Scholar