Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T14:32:51.207Z Has data issue: false hasContentIssue false

Doping high Tc superconductors with oxygen and metallic atoms: A molecular dynamics study

Published online by Cambridge University Press:  31 January 2011

Erich Stoll
Affiliation:
Physik-Institut, Universität Zürich-Irchel, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
Christian Stern
Affiliation:
Institut für Informatik der Universität Zürich, MultiMedia Laboratorium, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
Johannes Singer
Affiliation:
Physik-Institut, Universität Zürich-Irchel, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
Peter Stucki
Affiliation:
Institut für Informatik der Universität Zürich, MultiMedia Laboratorium, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
Get access

Abstract

Using classical molecular dynamics based on Lennard–Jones-like potentials, a mechanically stable YBa2Cu3O7 high Tc superconductor structure is generated. This process is controlled via interactive computer graphics. After doping atoms into or removing atoms from the sample using a recently implemented picking mechanism, the lattice oscillation energy is annihilated with a simulated annealing procedure. The remaining minimum ground state energy allows marking of the preferred doping location. Information on the doping mechanism is important because the magnetic and superconducting properties of these compounds depend very strongly on their oxygen content.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see, e.g., Schneider, T. and Keller, H., Int. J. Mod. Phys. B 5, 487 (1993) and references therein.Google Scholar
2.Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
3.Stumpf, R. and Scheffler, M., Computer Phys. Commun. 79, 447 (1994).CrossRefGoogle Scholar
4.Hüsser, P., Stoll, E., Suter, H. U., and Meier, P. F., unpublished.Google Scholar
5.Vosko, S. H., Wilk, L., and Nussair, M., Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
6.Becke, A. D., Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
7.Schneider, T. and Stoll, E., Solid State Commun. 4, 79 (1966).CrossRefGoogle Scholar
8. Christian Stern, Peter Stucki, and Erich Stoll, in Proceedings Information Conference Module 3 Massively Parallel Systems, edited by Bauknecht, K. and Grossenbacher, J. M. (Swiss Nat. Sci. Found., Bern, 1994), p. 29.Google Scholar
9. Christian Stern, Peter Stucki, and Erich Stoll, unpublished.Google Scholar
11.Schön, J. Ch. and Jansen, M., Angew. Chem. 108, 1358 (1996).CrossRefGoogle Scholar
12.Verlet, L., Phys. Rev. 159, 98 (1967).CrossRefGoogle Scholar
13.Stern, Christian, Stucki, Peter, and Stoll, Erich, unpublished.Google Scholar
14. For a review, see Brinkmann, D. and Mali, M., NMR Basic Principles and Progress (Springer, Heidelberg, 1994), Vol. 31, p. 171.Google Scholar
15.Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., Appl. Phys. Lett. 40, 178 (1982).CrossRefGoogle Scholar
16.Binning, G., Quate, C. F., and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
17.Tiziana, Mordasini Denti and Christoph, Hanser, CrosSCutS 6 (3), 19 (1996).Google Scholar
18.Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99, 4899 (1977).Google Scholar
19.van Gunsteren, W. F. and Berendsen, H. J. C., GROningen MOlecular Simulation package and manual (GROMOS) (Biomos, University of Groningen, 1987).Google Scholar