Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T17:06:46.916Z Has data issue: false hasContentIssue false

Dynamic annealing of defects in irradiated zirconia-based ceramics

Published online by Cambridge University Press:  31 January 2011

Ram Devanathan*
Affiliation:
Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
William J. Weber
Affiliation:
Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
*
a)Address all correspondence to this author. e-mail: ram.devanathan@pnl.gov
Get access

Abstract

We have observed efficient damage recovery in large-scale molecular dynamics simulations of 30 keV Zr recoils in pure zirconia and yttria-stabilized zirconia, which is in stark contrast to radiation damage accumulation in zircon. Dynamic annealing is highly effective in zirconia during the first 5 ps of damage evolution, especially in the presence of oxygen structural vacancies. This results in near-complete recovery of damage. Damage recovery on the cation sublattice is assisted by the anion sublattice recovery, which explains the remarkable radiation tolerance of stabilized zirconia. Ceramics engineered to heal themselves in this fashion hold great promise for use in high-radiation environments or for safely encapsulating high-level radioactive waste over geological time scales.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1United States Department of EnergyThe Global Nuclear Energy Partnership, Available at http://www.gnep.energy.gov.Google Scholar
2Sickafus, K.E., Matzke, H., Hartmann, T., Yasuda, K., Valdez, J.A., Chodak, P., Nastasi, M., Verrall, R.A.: Radiation-damage effects in zirconia. J. Nucl. Mater. 274, 66 1999CrossRefGoogle Scholar
3Farnan, I., Cho, H., Weber, W.J.: Quantification of actinide α-radiation damage in minerals and ceramics. Nature 445, 190 2007CrossRefGoogle ScholarPubMed
4Smith, W., Todorov, I.T.: A short description of DL_POLY. Mol. Simul. 32, 935 2006CrossRefGoogle Scholar
5Devanathan, R., Corrales, L.R., Weber, W.J., Chartier, A., Meis, C.: Molecular dynamics simulation of disordered zircon. Phys. Rev. B 69, 064115 2004CrossRefGoogle Scholar
6Schelling, P.K., Phillpot, S.R., Wolf, D.: Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J. Am. Ceram. Soc. 84, 1609 2001CrossRefGoogle Scholar
7Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Matter Pergamon New York 1985CrossRefGoogle Scholar
8Humphrey, W., Dalke, A., Schulten, K.: VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33 1996CrossRefGoogle ScholarPubMed
9Ewing, R.C.: Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U.S.A. 96, 3432 1999CrossRefGoogle ScholarPubMed
10Devanathan, R., Corrales, L.R., Weber, W.J., Chartier, A., Meis, C.: Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol. Simul. 32, 1069 2006CrossRefGoogle Scholar
11Devanathan, R., Weber, W.J., Singhal, S.C., Gale, J.D.: Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ionics 177, 1251 2006CrossRefGoogle Scholar
12Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C.B., Prinz, F.B.: Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 103513 2005CrossRefGoogle Scholar
13Trachenko, K., Pruneda, J.M., Artacho, E., Dove, M.T.: How the nature of the chemical bond governs resistance to amorphization by radiation damage. Phys. Rev. B 71, 184104 2005CrossRefGoogle Scholar
14Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., Uberuaga, B.P.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 217 2007CrossRefGoogle ScholarPubMed
15Weber, W.J., Ewing, R.C.: Plutonium immobilization and radiation effects. Science 289, 2051 2000CrossRefGoogle ScholarPubMed
16Ewing, R.C., Weber, W.J., Lian, J.: Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 2004CrossRefGoogle Scholar
17Rushton, M.J.D., Stanek, C.R., Cleave, A.R., Uberuaga, B.P., Sickafus, K.E., Grimes, R.W.: Simulation of defects and defect processes in fluorite and fluorite related oxides: Implications for radiation tolerance. Nucl. Instrum. Methods B 255, 151 2007CrossRefGoogle Scholar