Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-24T13:24:44.475Z Has data issue: false hasContentIssue false

Effect of gallium doping and ball milling process on the thermoelectric performance of n-type ZnO

Published online by Cambridge University Press:  24 July 2012

Priyanka Jood*
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2519, Australia
Germanas Peleckis
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2519, Australia
Xiaolin Wang
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2519, Australia
Shi Xue Dou
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2519, Australia
*
a)Address all correspondence to this author. e-mail: pj991@uowmail.edu.au
Get access

Abstract

We report a systematic investigation of the thermoelectric properties of n-type Ga-doped ZnO synthesized using different ball milling conditions. Samples fabricated by the high-energy ball milling resulted in a highly dense layered structure with randomly distributed voids. These samples measured the lowest room temperature thermal conductivity, i.e., 27 W/mK due to increased phonon scattering. Furthermore, the Ga:ZnO system showed a metal–semiconductor transition above 300 K with transition temperature decreasing with increasing doping level. Measurement of the activation energy revealed the presence of one donor level around 3.9–7.8 meV and a deeper donor level around 15.4–18.1 meV below the conduction band for the Ga-doped samples. For Ga-doped ZnO, Seebeck coefficient of −185 μV/K (at 1000 K) was achieved, which is ∼30–45% higher than the values previously reported for Zn:Ga system. Jonker plot analysis was used to analyze the scope of Ga:ZnO bulk system.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tritt, T.M. and Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
2.Koumoto, K., Terasaki, I., and Funahashi, R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).CrossRefGoogle Scholar
3.Funahashi, R., Matsubara, I., Ikuta, H., and Takeuchi, T.: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).CrossRefGoogle Scholar
4.Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
5.Tsubota, T., Ohtaki, M., Eguchi, K., and Arai, H.: Thermoelectric properties of Al-doped ZnO as a promising oxide material for high temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
6.Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
7.Kim, K.H., Shim, S.H., Shim, K.B., Niihara, K., and Hojo, J.: Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. J. Am. Ceram. Soc. 88, 628 (2005).CrossRefGoogle Scholar
8.Cai, K.F., Muller, E., Drasar, C., and Mrotzek, A.: Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mater. Sci. Eng., B 104, 45 (2003).CrossRefGoogle Scholar
9.Fujishiro, Y., Miyata, M., Awano, M., and Maeda, K.: Effect of microstructural control on thermoelectric properties of hot-pressed aluminum-doped zinc oxide. J. Am. Ceram. Soc. 86, 2063 (2003).CrossRefGoogle Scholar
10.Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H.: High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
11.Wiff, J.P., Kinemuchi, Y., Kaga, H., Ito, C., and Watari, K.: Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics. J. Eur. Ceram. Soc. 29, 1413 (2009).CrossRefGoogle Scholar
12.Orikasa, Y., Hayashi, N., and Muranaka, S.: Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering. J. Appl. Phys. 103, 113703 (2008).Google Scholar
13.Cook, B.A., Harringa, J.L., and Vining, C.B.: Electrical properties of Ga and ZnS doped ZnO prepared by mechanical alloying. J. Appl. Phys. 83, 5858 (1998).Google Scholar
14.Bhosle, V., Tiwari, A., and Narayan, J.: Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106 (2006).CrossRefGoogle Scholar
15.Gutman, E.M.: Mechanochemistry of Materials (Cambridge International Science Publishing, Cambridge, 1998).Google Scholar
16.Suryanarayana, C.: Mechanical Alloying and Milling (Dekker, New York, 2004).Google Scholar
17.Vinesh, A., Bhargava, H., Lakshmi, N., and Venugopalan, K.: Magnetic anisotropy induced by high energy ball milling of Fe2MnAl. J. Appl. Phys. 105, 07A309 (2009).Google Scholar
18.Huang, J.Y., Wu, Y.K., and Ye, H.Q.: Microstructure investigations of ball milled materials. Microsc. Res. Tech. 40, 101 (1998).3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
19.Pablo, Á., Pedro, G., Victorino, F., Jorge Sánchez, M., María, J.P., José, L.S.L., Inés Puente, O., and Jesús, A.B.: Nanocrystalline Nd2 Fe17 synthesized by high-energy ball milling: Crystal structure, microstructure and magnetic properties. J. Phys. Condens. Matter 22, 216005 (2010).Google Scholar
20.Liu, H.Y., Kong, H., Ma, X.M., and Shi, W.Z.: Microstructure and electrical properties of ZnO-based varistors prepared by high-energy ball milling. J. Mater. Sci. 42, 2637 (2007).CrossRefGoogle Scholar
21.Hynes, A.P., Doremus, R.H., and Siegel, R.W.: Sintering and characterization of nanophase zinc oxide. J. Am. Ceram. Soc. 85, 1979 (2002).Google Scholar
22.Paul, G.K. and Sen, S.K.: Sol–gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films. Mater. Lett. 57, 742 (2002).CrossRefGoogle Scholar
23.Wang, R., Sleight, A.W., and Cleary, D.: High conductivity in gallium-doped zinc oxide powders. Chem. Mater. 8, 433 (1996).CrossRefGoogle Scholar
24.Das, V.D. and Ganesan, P.G.: Thickness and temperature effects on thermoelectric power and electrical resistivity of (Bi0.25Sb0.75)2Te3 thin films. Mater. Chem. Phys. 57, 57 (1998).CrossRefGoogle Scholar
25.Mott, N.F.: Metal-Insulator Transition (Taylor & Francis, London, 1974).Google Scholar
26.Alexander, M.N. and Holcomb, D.F.: Semiconductor-to-metal transition in n-type group IV semiconductors. Rev. Mod. Phys. 40, 815 (1968).CrossRefGoogle Scholar
27.Park, C.H., Zhang, S.B., and Wei, S.H.: Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 66, 073202 (2002).CrossRefGoogle Scholar
28.Bhosle, V., Tiwari, A., and Narayan, J.: Electrical properties of transparent and conducting Ga doped ZnO. J. Appl. Phys. 100, 033713 (2006).Google Scholar
29.Shimakawa, K., Narushima, S., Hosono, H., and Kawazoe, H.: Electronic transport in degenerate amorphous oxide semiconductors. Philos. Mag. Lett. 79, 755 (1999).CrossRefGoogle Scholar
30.Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975).Google Scholar
31.Kinemuchi, Y., Nakano, H., Mikami, M., Kobayashi, K., Watari, K., and Hotta, Y.: Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide. J. Appl. Phys. 108, 053721 (2010).CrossRefGoogle Scholar
32.Zhu, Q., Hopper, E.M., Ingram, B.J., and Mason, T.O.: Combined Jonker and Ioffe analysis of oxide conductors and semiconductors. J. Am. Ceram. Soc. 94, 187 (2011).CrossRefGoogle Scholar
33.Kinemuchi, Y., Ito, C., Kaga, H., Aoki, T., and Watari, K.: Thermoelectricity of Al-doped ZnO at different carrier concentrations. J. Mater. Res. 22, 1942 (2007).Google Scholar