Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-10-02T19:24:39.424Z Has data issue: false hasContentIssue false

The effect of TiO2 addition on the preparation and phase transformation for precursor β-spodumene powders

Published online by Cambridge University Press:  03 March 2011

Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Get access

Abstract

Fine β-spodumene-type amorphous powders were obtained through sol-gel techniques using Si(OC2H5)4, Al (OC2H5)3, LiOCH3, and Ti(OC2H5)4 as the starting metal alkoxides. Differential thermal analysis (DTA), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron diffraction (ED) analysis were utilized to study the phase transformation behavior of the LAST gels. The viscosity of the LAST solution increased abruptly at longer time when the TiO2 content was increased. As the TiO2 content was increased, the peak position of β-spodumene phase formation in DTA curves was shifted to a lower temperature. For calcination of LAST gels at 800°-1200 °C, the crystallized phases are composed of the major phase of β-spodumene and a minor phase of rutile (TiO2). Unlike earlier studies, heating the dried LAST gels from 800 °C to 1200 °C did not show β-eucryptite, nor found γ-spodumene.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yang, J. S., Sakka, S., Yoko, T., and Kozuka, H., J. Mater. Sci 26 1827 (1991).CrossRefGoogle Scholar
2Suzuki, H., Takahashi, J., and Saito, H., J. Chem. Soc Jpn (10) 1312 (1991).Google Scholar
3Tummala, R. R., J. Am. Ceram. Soc. 74, 895 (1991).CrossRefGoogle Scholar
4Suzuki, H., Takahashi, J., and Saito, H., J. Chem. Soc Jpn (10), 1319 (1991).Google Scholar
5Knicherbocher, S., Tuzzolo, M. R., and Lawhorne, S., J. Am Ceram. Soc. 72, 1873 (1989).CrossRefGoogle Scholar
6Johnson, D. W. Jr., Am. Ceram. Soc. Bull. 64, 1597 (1985).Google Scholar
7Dislich, H., J. Non-Cryst. Solids 73, 599 (1985).CrossRefGoogle Scholar
8Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).CrossRefGoogle Scholar
9Samuneva, B., Jambazov, S., Lepkova, D., and Dimitriev, Y.Ceram. Int. 16, 355 (1990).CrossRefGoogle Scholar
10Colomban, Ph., Ceram. Int. 15, 23 (1989).CrossRefGoogle Scholar
11Murakami, H., Yaegashi, S., Nishino, J., Shiohara, Y., and Tanaka, S., Jpn. J. Appl. Phys. 29, 2715 (1990).CrossRefGoogle Scholar
12Ostertag, W., Fischer, G. R., and Williams, J. P., J. Am. Ceram. Soc. 51, 651 (1968).CrossRefGoogle Scholar
13Suzuki, H., Ota, K., and Saito, H., J. Ceram. Soc. Jpn. 95, 163 (1987).Google Scholar
14Orcel, G. and Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, Inc., New York, 1986), pp. 224230.Google Scholar
15Phalippon, J., Prassas, M., and Zarzycki, J., J. Non-Cryst. Solids 48, 17 (1982).CrossRefGoogle Scholar
16Veltri, R. and Scola, D., Powder Metall. Int. 21, 18 (1989).Google Scholar
17Kobayashi, H., Ishibashi, N., Akiba, T., and Mitamura, T., J. Ceram. Soc. Jpn. 98, 703 (1990).CrossRefGoogle Scholar
18Powder Diffraction File, 22-408 JCPDS (1976).Google Scholar
19Powder Diffraction File, 21-1276 JCPDS (1976).Google Scholar
20Wang, M. C., J. Ceram. Soc. Jpn. 102, 109 (1994).CrossRefGoogle Scholar