Hostname: page-component-68945f75b7-z8dg2 Total loading time: 0 Render date: 2024-08-05T23:19:18.034Z Has data issue: false hasContentIssue false

Effects of anisotropic pore structure and fiber texture on fatigue properties of lotus-type porous magnesium

Published online by Cambridge University Press:  31 January 2011

H. Seki*
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
M. Tane
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
H. Nakajima
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
*
a)Address all correspondence to this author. e-mail: seki23@sanken.osaka-u.ac.jp
Get access

Abstract

We studied the effects of anisotropic pores and fiber texture on the fatigue strength and fracture surface of lotus-type porous magnesium fabricated through unidirectional solidification in pressurized hydrogen and argon atmospheres. The fatigue strength in the direction parallel to the longitudinal axis of pores is higher than that in the perpendicular direction. Not only anisotropic pores but also fiber texture grown along the pore direction contributes to the anisotropy in the fatigue strength. The fatigue strength at finite life of lotus magnesium is closely related to the ultimate tensile strength; the fatigue strength is proportional to the ultimate tensile strength for both loadings parallel and perpendicular to the pore direction. The fracture surface of lotus magnesium is not flat, which originates from porous structure. For parallel loading, fiber texture in lotus magnesium also contributes to the irregular surface, i.e., a combination of texture and pore structure affects fracture surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Körner, C., Hirschmann, M., Bräutigam, V.Singer, R.F.: Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6, 385 2004CrossRefGoogle Scholar
2Kanahashi, H., Mukai, T., Yamada, Y., Shimojima, K., Mabuchi, M., Aizawa, T.Higashi, K.: Experimental study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure. Mater. Sci. Eng., A 308, 283 2001CrossRefGoogle Scholar
3Kikuchi, Y., Kakehi, K., Kitazono, K., Sato, E.Kuribayashi, K.: Magnesium foam produced from bulk AZ31 magnesium alloy sheets. Mater. Sci. Forum 501, 433 2005Google Scholar
4Brandes, E.A.Brook, G.B.Smithells Metals Reference Book, 7th ed.Butterworth–Heinemann Press Oxford, UK 1992Google Scholar
5Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 2001CrossRefGoogle Scholar
6Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W.Wadley, H.N.G.: Metal Foams Butterworth–Heineman Press Woburn, MA 2000Google Scholar
7Gibson, L.J.Ashby, M.F.Cellular Solids 2nd ed.Cambridge University Press Cambridge, UK 1997CrossRefGoogle Scholar
8Ashby, M.F.: The mechanical properties of cellular solids. Metall. Mater. Trans. A 14, 1755 1983CrossRefGoogle Scholar
9Nakajima, H., Hyun, S.K.Ikeda, T.: Fabrication and mechanical properties of Lotus-structured porous copper and magnesium. Acta Technica Napocensis. 45, 3 2002Google Scholar
10Nakajima, H.: Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091 2007CrossRefGoogle Scholar
11Nakajima, H., Ikeda, T.Hyun, S.K.: Fabrication of lotus-type porous metals and their physical properties. Adv. Eng. Mater. 6, 377 2004CrossRefGoogle Scholar
12Hyun, S.K., Murakami, K.Nakajima, H.: Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng., A 299, 241 2001CrossRefGoogle Scholar
13Tane, M., Ichitsubo, T., Hyun, S.K.Nakajima, H.: Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 2005CrossRefGoogle Scholar
14Tane, M., Ichitsubo, T., Nakajima, H., Hyun, S.K.Hirao, M.: Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 2004CrossRefGoogle Scholar
15Tane, M., Ichitsubo, T., Hirao, M., Ikeda, T.Nakajima, H.: Elastic constants of lotus-type porous magnesium: Comparison with effective-mean-field theory. J. Appl. Phys. 96, 3696 2004CrossRefGoogle Scholar
16Stevenso, R.Vendersa, J.B.: The cyclic deformation of magnesium single crystals. Acta Metall. 22, 1079 1974CrossRefGoogle Scholar
17Kwadjo, R.Brown, L.M.: Cyclic hardening of magnesium single crystals. Acta Metall. 26, 1117 1978CrossRefGoogle Scholar
18Ando, S.Tonda, H.: Fatigue-crack propagation in magnesium single crystals. Mater. Sci. Forum 419, 1031 2003CrossRefGoogle Scholar
19Couret, A.Caillard, D.: An in situ study of prismatic glide in magnesium-I. The rate controlling mechanism. Acta Metall. 33, 1447 1985CrossRefGoogle Scholar
20Seki, H., Tane, M., Otsuka, M.Nakajima, H.: Effects of pore morphology on fatigue strength and fracture surface of lotus-type porous copper. J. Mater. Res. 22, 1331 2007CrossRefGoogle Scholar
21Pettersen, K., Lohne, O.Ryum, N.: Dendritic solidification of magnesium alloy AZ91. Metall. Trans. A 21, 221 1990CrossRefGoogle Scholar
22Cahn, R.W.Haasen, P.Physical Metallurgy, 4th ed.North-Holland Press The Netherlands 1996Google Scholar
23Harte, A-M., Fleck, N.A.Ashby, M.F.: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 47, 2511 1999CrossRefGoogle Scholar
24Zhou, J.Soboyejo, W.O.: Compression-compression fatigue of open cell aluminum foams: macro-/micro-mechanisms and the effects of heat treatment. Mater. Sci. Eng., A 369, 23 2004CrossRefGoogle Scholar
25Sugimura, Y., Rabiei, A., Evans, A.G., Harte, A.M.Fleck, N.A.: Compression fatigue of a cellular Al alloy. Mater. Sci. Eng., A 269, 38 1999CrossRefGoogle Scholar
26Suresh, S.Fatigue of Materials, 2nd ed.Cambridge University Press Cambridge, UK 1998CrossRefGoogle Scholar