Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T17:22:12.382Z Has data issue: false hasContentIssue false

Effects of Nb2O5 in (Ba,Bi,Nb)-added TiO2 ceramic varistors

Published online by Cambridge University Press:  03 March 2011

Seng-Lu Yang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
Jenn-Ming Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
Get access

Abstract

Novel (Ba,Bi,Nb)-added TiO2 ceramic was previously proved to be potentially useful as a varistor material, and by varying atmosphere compensation the roles of barium and bismuth have been explored. The present work attempted to investigate how the third additive, niobium, operates on varistor characteristics. The content of added niobium is in the range from 0.125 to 1.0 cat. %, while that of the other additives is always maintained at a constant value. The results show that an adequate addition of niobium, 0.25 cat. % Nb, is beneficial to the improvement of varistor characteristics. The variations of varistor behavior are discussed in terms of a point defect model. Two kinds of charge compensation, for the substitutional incorporation of niobium into the titanium rutile lattice, are also used to illustrate the variation. The detailed results and discussions are shown in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Powers, R. W. and Mitoff, S. P., J. Electrochem. Soc. 122 (2), 226231 (1975).CrossRefGoogle Scholar
2Gupta, T. K., J. Am. Ceram. Soc. 73 (7), 18171840 (1990).CrossRefGoogle Scholar
3Yamaoka, N., Masuyama, M., and Fukui, M., Am. Ceram. Soc. Bull. 62 (6), 698700, 702 (1983).Google Scholar
4Yan, M. F. and Rhodes, W. W., Appl. Phys. Lett. 40 (6), 536537 (1982).CrossRefGoogle Scholar
5Kingery, W. D., in Grain Boundary Phenomena in Electronic Ceramics, edited by Levinson, L. M. (American Ceramic Society, Inc., Westerville, OH, 1981), p. 1.Google Scholar
6Leamy, H. J., Pike, G. E., and Seager, C. H., Grain Boundaries in Semiconductors (Elsevier Science Publishing Co., Inc., New York, 1982).Google Scholar
7Yan, M. F. and Rhodes, W. W., in Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (Elsevier Science Publishing Company, Inc., New York, 1982), pp. 357362.Google Scholar
8Yan, M. F. and Rhodes, W. W., in Additives and Interfaces in Electronic Ceramics, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Inc., Westerville, OH, 1983), p. 226.Google Scholar
9Pennewiss, J. and Hoffmann, B., Mater. Lett. 9 (5–6), 219226 (1990).CrossRefGoogle Scholar
10Wu, J. M. and Lai, C. H., J. Am. Ceram. Soc. 74 (12), 31123117 (1991).CrossRefGoogle Scholar
11Wu, J. M. and Lai, C. H., Mater. Lett. 15, 3538 (1992).Google Scholar
12Yang, S. L. and Wu, J. M., J. Am. Ceram. Soc. 76 (1), 145152 (1993).CrossRefGoogle Scholar
13Yang, S. L. and Wu, J. M., unpublished.Google Scholar
14Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, Inc., New York, 1976), pp. 931945.Google Scholar
15Koops, C. G., Phys. Rev. 83, 121 (1951).Google Scholar
16Emtage, P. R., J. Appl. Phys. 48, 43724384 (1977).CrossRefGoogle Scholar
17Baumard, J. F. and Tani, E., J. Chem. Phys. 67 (3), 857860 (1977).Google Scholar
18Zimmermann, P. M., Phys. Rev. B 8, 39173927 (1973).Google Scholar
19Forland, K. S., Acta Chem. Scand. 18, 12671275 (1964).CrossRefGoogle Scholar
20Moser, J. B., Blumenthal, R. N., and Whitmore, D. H., J. Am. Ceram. Soc. 48, 384 (1965).Google Scholar
21Kofstad, P., J. Phys. Chem. Solids 23, 1579 (1962).CrossRefGoogle Scholar
22Kröger, F. A., in The Chemistry of Imperfect Crystals (North-Holland Co., Amsterdam, The Netherlands, 1974).Google Scholar
23Barringer, E. A. and Bowen, H. K., J. Am. Ceram. Soc. 65, C199C201 (1982).CrossRefGoogle Scholar
24Anderson, H. U., J. Am. Ceram. Soc. 50 (5), 235238 (1967).Google Scholar
25Wu, J. M. and Chen, C. J., J. Mater. Sci. 23, 41574164 (1988).Google Scholar
26Heywang, W., J. Am. Ceram. Soc. 47, 484 (1964).CrossRefGoogle Scholar
27Yan, M. F., Cannon, R. M., and Bowen, H. K., J. Appl. Phys. 54, 764 (1983).CrossRefGoogle Scholar