Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T18:43:40.378Z Has data issue: false hasContentIssue false

Effects of position, thickness, and annealing temperature of Ag buffer layer on the shape of ZnO nanocrystals grown by a simple hydrothermal process

Published online by Cambridge University Press:  16 December 2013

Baojia Li*
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; and Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013, People's Republic of China
Lijing Huang
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; and Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013, People's Republic of China
Ming Zhou
Affiliation:
The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
Naifei Ren
Affiliation:
Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013, People's Republic of China; and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*
a)Address all correspondence to this author. e-mail: bjia_li@126.com
Get access

Abstract

In this paper, we report on the well-aligned zinc oxide (ZnO) nanorods synthesized on Ag buffer layer/glass substrate using a modified hydrothermal method, which adopts the strategy of Ag layer facing down. The effects of position, thickness, and annealing temperature of Ag layer on the shape of ZnO nanocrystals were systematically investigated. It was found that the diameter and length of ZnO nanorods decrease with the Ag layer height up to 12 mm, above which no obvious decrease was observed. Oppositely, the density, diameter, and length of ZnO rods all increase with an increase in the Ag layer thickness, except that the length becomes constant above a critical thickness of 60 nm. In addition, when the Ag layer annealing temperature increases from 300 to 400 °C, the nanorod density decreases, the diameter increases, and the length remains nearly invariable, respectively. Surprisingly, randomly inclined nanorods with two different diameters dispersedly coexist on the Ag layer that was annealed at 500 °C. This work may provide an effective approach for the shape control in ZnO-based applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chu, S., Olmedo, M., Yang, Z., Kong, J., and Liu, J.: Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008).CrossRefGoogle Scholar
Wang, M., Fei, G.T., and Zhang, L.D.: Porous-ZnO-nanobelt film as recyclable photocatalysts with enhanced photocatalytic activity. Nanoscale Res. Lett. 5, 1800 (2010).CrossRefGoogle ScholarPubMed
Wang, L.W., Kang, Y.F., Liu, X.H., Zhang, S.M., Huang, W.P., and Wang, S.R.: ZnO nanorod gas sensor for ethanol detection. Sens. Actuators, B 162, 237 (2012).CrossRefGoogle Scholar
Bao, J.M., Zimmler, M.A., and Capasso, F.: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).CrossRefGoogle ScholarPubMed
Unalan, H.E., Wei, D., Suzuki, K., Dalal, S., Hiralal, P., Matsumoto, H., Imaizumi, S., Minagawa, M., Tanioka, A., Flewitt, A.J., Milne, W.I., and Amaratunga, G.A.J.: Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).CrossRefGoogle Scholar
Yang, L.L., Zhao, Q.X., Willander, M., and Yang, J.H.: Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition. J. Cryst. Growth 311, 1046 (2009).CrossRefGoogle Scholar
Xu, C.X., Sun, X.W., Dong, Z.L., Yu, M.B., My, T.D., Zhang, X.H., Chua, S.J., and White, T.J.: Zinc oxide nanowires and nanorods fabricated by vapour-phase transport at low temperature. Nanotechnology 15, 839 (2004).CrossRefGoogle Scholar
Wang, B., Jin, X., Ouyang, Z.B., and Xu, P.: Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation. Appl. Phys. A 108, 195 (2012).CrossRefGoogle Scholar
Yan, X.D.N., Li, Z., Chen, R., and Gao, W.: Template growth of ZnO nanorods and microrods with controlled densities. Cryst. Growth Des. 8, 2406 (2008).CrossRefGoogle Scholar
Bhat, D.K.: Facile synthesis of ZnO nanorods by microwave irradiation of zinc–hydrazine hydrate complex. Nanoscale Res. Lett. 3, 31 (2008).CrossRefGoogle Scholar
Baruah, S. and Dutta, J.: pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 311, 2549 (2009).CrossRefGoogle Scholar
Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J., and Yang, P.: Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031 (2003).CrossRefGoogle ScholarPubMed
Akgun, M.C., Afal, A., and Unalan, H.E.: Hydrothermal zinc oxide nanowire growth with different zinc salts. J. Mater. Res. 27, 2401 (2012).CrossRefGoogle Scholar
Ohara, S., Mousavand, T., Sasaki, T., Umetsu, M., Naka, T., and Adschiri, T.: Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. J. Mater. Sci. 43, 2393 (2008).CrossRefGoogle Scholar
Akhavan, O., Mehrabian, M., Mirabbaszadeh, K., and Azimirad, R.: Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D: Appl. Phys. 42, 225305 (2009).CrossRefGoogle Scholar
Liu, S.Y., Chen, T., Wan, J., Ru, G.P., Li, B.Z., and Qu, X.P.: The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method. Appl. Phys. A 94, 775 (2009).CrossRefGoogle Scholar
Kim, A.R., Lee, J.Y., Jang, B.R., Kim, H.S., Park, H.K., Cho, Y.J., and Jang, N.W.: Effect of post annealing of ZnO buffer layer on the properties of hydrothermally grown ZnO nanorods. Jpn. J. Appl. Phys. 49, 06GH10 (2010).CrossRefGoogle Scholar
Unalan, H.E., Hiralal, P., Kuo, D., Parekh, B., Amaratunga, G., and Chhowalla, M.: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 18, 5909 (2008).CrossRefGoogle Scholar
Chung, T.F., Zapien, J.A., and Lee, S.T.: Luminescent properties of ZnO nanorod arrays grown on Al:ZnO buffer layer. J. Phys. Chem. C 112, 820 (2008).CrossRefGoogle Scholar
Chang, S.Y., Yang, N.H., and Huang, Y.C.: Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol-gel transparent conducting films. J. Electrochem. Soc. 156, K200 (2009).CrossRefGoogle Scholar
Lee, H.K., Kim, M.S., and Yu, J.S.: Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 22, 445602 (2011).CrossRefGoogle ScholarPubMed
Zou, C.W. and Gao, W.: Microstructure and mechanical properties of ZnO films on silicon substrate with ITO buffer layer. Int. J. Mod. Phys. B 23, 1764 (2009).CrossRefGoogle Scholar
Nozaki, S., Sarangi, S.N., Sahu, S.N., and Uchida, K.: Selective growth of ZnO nanorods by the hydrothermal technique. Adv. Nat. Sci. 4, 015008 (2013).Google Scholar
Yu, H.D., Zhang, Z.P., Han, M.Y., Hao, X.T., and Zhu, F.R.: A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2378 (2005).CrossRefGoogle ScholarPubMed
Muster, T.H., Neufeld, A.K., and Cole, I.S.: The protective nature of passivation films on zinc: Wetting and surface energy. Corros. Sci. 46, 2337 (2004).CrossRefGoogle Scholar
Xu, F., Lu, Y., Xie, Y., and Liu, Y.: Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. J. Phys. Chem. C 113, 1052 (2009).CrossRefGoogle Scholar
Trushin, O.S., Kokko, K., and Salo, P.T.: Film-substrate interface mixing in the energetic deposition of Ag on Cu(001). Surf. Sci. 442, 420 (1999).CrossRefGoogle Scholar
Tong, Y., Liu, Y., Dong, L., Zhao, D., Zhang, J., Lu, Y., Shen, D., and Fan, X.: Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 110, 20263 (2006).CrossRefGoogle ScholarPubMed
Fan, F.R., Ding, Y., Liu, D.Y., Tian, Z.Q., and Wang, Z.L.: Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 131, 12036 (2009).CrossRefGoogle ScholarPubMed
Liu, X., Wu, X., Cao, H., and Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004).CrossRefGoogle Scholar
Liu, X.X., Jin, Z.G., Bu, S.J., Zhao, J., and Liu, Z.F.: Effect of buffer layer on solution deposited ZnO films. Mater. Lett. 59, 3994 (2005).CrossRefGoogle Scholar
Park, S.H., Lee, Y.B., Kwak, C.H., Seo, S.Y., Kim, S.H., Choi, Y.D., and Han, S.W.: Structural and optical properties of nitrogen-ion-implanted ZnO nanorods. J. Korean Phys. Soc. 52, 954 (2008).CrossRefGoogle Scholar
de Moura, A.P., Lima, R.C., Moreira, M.L., Volanti, D.P., Espinosa, J.W.M., Orlandi, M.O., Pizani, P.S., Varela, J.A., and Longo, E.: ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics 181, 775 (2010).CrossRefGoogle Scholar
Chang, R.F., Levelt Sengers, J.M.H., Doiron, T., and Jones, J.: Gravity-induced density and concentration profiles in binary mixtures near gas-liquid critical lines. J. Chem. Phys. 79, 3058 (1983).CrossRefGoogle Scholar
Sun, X.M., Chen, X., Deng, Z.X., and Li, Y.D.: A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78, 99 (2002).CrossRefGoogle Scholar
Akguna, M.C., Kalaya, Y.E., and Unalana, H.E.: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445 (2012).CrossRefGoogle Scholar
Tsai, J.K., Shih, J.H., Wu, T.C., and Meen, T.H.: n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes. Nanoscale Res. Lett. 7, 664 (2012).CrossRefGoogle Scholar
Kim, A.R., Lee, J.Y., Jang, B.R., Kim, H.S., Cho, Y.J., Park, H.K., Jang, N.W., and Kim, J.H.: Effect of buffer layer thickness on the growth properties of hydrothermally grown ZnO nanorods. J. Nanosci. Nanotechnol. 11, 1409 (2011).CrossRefGoogle ScholarPubMed
Kim, D.C., Kong, B.H., Cho, H.K., Park, D.J., and Lee, J.Y.: Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology 18, 015603 (2007).CrossRefGoogle Scholar
Zhao, X.Q., Kim, C.R., Lee, J.Y., Heo, J.H., Shin, C.M., Ryu, H., Chang, J.H., Lee, H.C., Son, C.S., Lee, W.J., Jung, W.G., Tan, S.T., Zhao, J.L., and Sun, X.W.: Effects of buffer layer annealing temperature on the structural and optical properties of hydrothermal grown ZnO. Appl. Surf. Sci. 255, 4461 (2009).CrossRefGoogle Scholar
Bae, Y.S., Kim, D.C., Ahn, C.H., Kim, J.H., and Cho, H.K.: Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf. Interface Anal. 42, 978 (2010).CrossRefGoogle Scholar
Shim, J.B., Chang, H., and Kim, S.O.: Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers. J. Nanomater. 2011, 582764 (2011).CrossRefGoogle Scholar
Cho, M.Y., Kim, M.S., Choi, H.Y., Yim, K.G., and Leem, J.Y.: Post-annealing effects on properties of ZnO nanorods grown on Au seed layers. Bull. Korean Chem. Soc. 32, 880 (2011).CrossRefGoogle Scholar
Weigand, C.C., Skåre, D., Ladam, C., Grepstad, J., and Weman, H.: Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures. Nanoscale Res. Lett. 6, 566 (2011).CrossRefGoogle ScholarPubMed
Song, J. and Lim, S.: Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C 111, 596 (2007).CrossRefGoogle Scholar
Cavalcante, L.S., Marques, V.S., Sczancoski, J.C., Escote, M.T., Joya, M.R., Varela, J.A., Santos, M.R.M.C., Pizani, P.S., and Longo, E.: Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chem. Eur. J. 143, 299 (2008).Google Scholar
Wang, G., Shi, C., Zhao, N., and Du, X.: Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater. Lett. 61, 3795 (2007).CrossRefGoogle Scholar
Sato, M., Hara, H., Kuritani, H., and Nishide, T.: Novel route to Co3O4 thin films on glass substrates via N-alkyl substituted amine salt of Co(III)-EDTA complex. Sol. Energy Mater. Sol. Cells 45, 43 (1997).CrossRefGoogle Scholar
da Silva, L.F., Maia, L.J.Q., Bernardi, M.I.B., Andres, J.A., and Mastelaro, V.R.: An improved method for preparation of SrTiO3 nanoparticles. Mater. Chem. Phys. 125, 168 (2011).CrossRefGoogle Scholar
Lu, X.H., Wang, D., Li, G.R., Su, C.Y., Kuang, D.B., and Tong, Y.X.: Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass. J. Phys. Chem. C 113, 13574 (2009).CrossRefGoogle Scholar
Unalan, H.E., Hirala, P., Rupesinghe, N., Dalal, S., Milne, W.I., and Amaratunga, G.A.J.: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608 (2008).CrossRefGoogle ScholarPubMed
Pankove, J.I.: Optical Processes in Semiconductors (Prentice Hall, Inc., New Jersey, 1971), p. 34.Google Scholar
Cavalcante, L.S., Simões, A.Z., Espinosa, J.W.M., Santos, L.P.S., Longo, E., Varela, J.A., and Pizani, P.S.: Study of structural evolution and photoluminescent properties at room temperature of Ca(Zr,Ti)O3 powders. J. Alloys Compd. 464, 340 (2008).CrossRefGoogle Scholar