Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T20:13:59.373Z Has data issue: false hasContentIssue false

Effects of secondary pretreatments of substrate on the nucleation of diamond film

Published online by Cambridge University Press:  31 January 2011

W. S. Yang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science / Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790–784, Republic of Korea
Jung Ho Je
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science / Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790–784, Republic of Korea
Get access

Abstract

The effects of secondary pretreatments on diamond nucleation were investigated for the Si substrates pretreated by the diamond abrasion. When the substrate was just abraded with diamond powder, the nucleation density of diamond was 7 × 108/cm2. However, the nucleation density was found to be greatly decreased by various secondary pretreatments except by one wet chemical etching method. The nucleation density was reduced to 3 × 107/cm2 by the chemical etching (I), to 7 × 106/cm2 by the H2 plasma etching, and to ∼104/cm2 by the Ar sputtering, or O2 plasma etching. It was very slightly reduced to 3 × 108/cm2 by the chemical etching (II). The effects of secondary pretreatments in reducing the nucleation density were found to be very closely related to the removal of diamond seeds rather than topographic sites or structural defects. Therefore, diamond seeds generated by the diamond abrasion are considered as the main nucleation sites of diamond.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2.Stoner, B. R., Ma, G-H.M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
3.Ascarelli, P. and Fontana, S., Appl. Surf. Sci. 64, 307 (1993).CrossRefGoogle Scholar
4.Ihara, M., Komiyama, H., and Okubo, T., Appl. Phys. Lett. 65, 1192 (1994).CrossRefGoogle Scholar
5.Chang, C-P., Flamm, D. L., Ibbotson, D. E., and Mucha, J.A., J. Appl. Phys. 63, 744 (1988).Google Scholar
6.Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6, 1491 (1991).CrossRefGoogle Scholar
7.Hirabayashi, K., Taniguchi, Y., Takamatsu, O., Ikeda, T., Ikoma, K., and Kurihara, N. I., Appl. Phys. Lett. 53, 1815 (1988).CrossRefGoogle Scholar
8.Yugo, S., Kimura, T., and Kanai, H., in Science and Technology of New Diamond, edited by Saito, S., Fukunaga, O., and Yoshikawa, M. (Terra Scientific Publishing Company, Tokyo, 1990), p. 119.Google Scholar
9.Lin, S. J., Lee, S. L., Hwang, J., Chang, C. S., and Wen, H. Y., Appl. Phys. Lett. 60, 1559 (1992).CrossRefGoogle Scholar
10.Kirkpatrick, A. R., Ward, B. W., and Economou, N. P., J. Vac. Sci. Technol. B 7, 1947 (1989).CrossRefGoogle Scholar
11.Lee, C. R., Leem, J. Y., and Chun, B. S., J. Mater. Sci. Lett. 14, 361 (1995).CrossRefGoogle Scholar
12.Denning, P. A., Shiomi, H., Stevenson, D. A., and Johnson, N. M., Thin Solid Films 212, 63 (1992).CrossRefGoogle Scholar
13.Ramesham, R. and Ellis, C., J. Mater. Res. 7, 1189 (1992).CrossRefGoogle Scholar
14.Taloni, A. and Rogers, W. J., Surf. Sci. 19, 371 (1970).CrossRefGoogle Scholar
15.Popovici, G. and Prelas, M. A., Phys. Status Solidi A 132, 233 (1992).CrossRefGoogle Scholar
16.Ma, J. S., Kawarada, H., Yonehara, T., Suzuki, J. I., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989).CrossRefGoogle Scholar
17.Celii, F. G., Nelson, H. H., and Pehrsson, P. E., J. Mater. Res. 5, 2337 (1990).CrossRefGoogle Scholar
18.Okubo, T., Ikari, S., Kusakabe, K., and Morooka, S., J. Mater. Sci. Lett. 11, 460 (1992).CrossRefGoogle Scholar
19.Park, S. S. and Lee, J. Y., J. Mater. Sci. 28, 1799 (1992).CrossRefGoogle Scholar
20.Inoue, T., Tachibana, H., Kazuo, T., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K., and Nakaue, A., J. Appl. Phys. 67, 7329 (1990).CrossRefGoogle Scholar
21.Ho Je, J. and Lee, G. Y., J. Mater. Sci. 27, 6324 (1992).CrossRefGoogle Scholar
22.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
23.Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 251 (1990).CrossRefGoogle Scholar
24.Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 249 (1990).CrossRefGoogle Scholar
25.Manos, D. M. and Flamm, D.L., in Plasma Etching (Academic Press, Inc., New York, 1989), pp. 131138.Google Scholar
26.Pickrell, D. J., Zhu, W., Badzian, A. R., Newnham, R. E., and Messier, R., J. Mater. Res. 6, 1264 (1991).CrossRefGoogle Scholar
27.Sung, C. P. and Shih, H. C., J. Mater. Res. 7, 105 (1992).CrossRefGoogle Scholar