Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T08:21:48.576Z Has data issue: false hasContentIssue false

Effects of the Heating Rate on Conversion of the Precursor Powders Used for Melt Processes into YBa2Cu3O7−y

Published online by Cambridge University Press:  31 January 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305-600, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305-600, Korea
Young A. Jee
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305-600, Korea
Il-Hyun Kuk
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305-600, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305-600, Korea
Get access

Abstract

Effects of the heating rate (100−6000 °C/h) to a peritectic temperature (Tp – 1015 °C) on conversion of Y2O3−BaCuO2−CuO and Y2BaCuO5−BaCuO2−CuO precursor powders into YBa2Cu3O7−y (Y123) were studied. Both precursor powders were rapidly converted into the Y123 phase. A volume fraction of the Y123 phase was more than 50%, even at a relatively fast heating rate of 3000 °C/h. At about 100−200 °C/h, which correspond to the rates of the first heating cycles of practical melt processes, almost 100% of the precursor powders were converted into a Y123 phase. Microstructures were studied in respect to Y2BaCuO5 (Y211) particle size, distribution, gas evolution, and nucleation mechanism of Y211 particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, M., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, L1189 (1989).CrossRefGoogle Scholar
4.Lian, Z., Pingxiang, Z., Ping, J., Keguang, W., Jingrong, W., and Xiaozu, W., Supercond. Sci. Technol. 3, 490 (1990).CrossRefGoogle Scholar
5.Morita, M., Takebayashi, S., Tanaka, M., Kimura, K., Miyamoto, K., and Sawano, K., Advances in Superconductivity III (Springer–Verlag, Tokyo, 1991), p. 733.CrossRefGoogle Scholar
6.Meng, R.L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y.Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
7.McGinn, P.J., Chen, W., Zhou, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 1455 (1990).CrossRefGoogle Scholar
8.Kim, C-J., Park, H.W., Kim, K-B., and Hong, G-W., Supercond. Sci. Technol. 8, 652 (1995).CrossRefGoogle Scholar
9.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
10.Izumi, T., Nakahara, Y., Sung, T. H., and Shiohara, Y., J. Mater. Res. 7, 801 (1992).CrossRefGoogle Scholar
11.Kim, C-J., Kim, K-B., Won, D-Y., Moon, H-C., Suhr, D-S., Lai, S.H., and McGinn, P. J., J. Mater. Res. 9, 1952 (1994).CrossRefGoogle Scholar
12.Pinol, S., Sandiumenge, F., Martines, B., Gomis, V., Fontcuberta, J., and Obrados, X., Appl. Phys. Lett. 65, 1448 (1995).CrossRefGoogle Scholar
13.Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
14.Murakami, M., Yamakuchi, K., Fujimoto, H., Nakamura, N., Taguchi, T., Koshizuka, N., and Tanaka, S., Cryogenics 32, 93 (1992).Google Scholar
15.Varanasi, C. and McGinn, P. J., Mater. Lett. 17, 205 (1993).CrossRefGoogle Scholar
16.Kim, C-J., Kim, K-B., and Hong, G-W., Mater. Lett. 21, 9 (1994).Google Scholar
17.Kim, C-J., Kim, K-B., and Hong, G-W., Physica C 243, 366 (1995).CrossRefGoogle Scholar
18.Murakami, M., Melt-processed High-temperature Superconductors (World Scientific Publishing Co., Singapore, 1992), p. 27.Google Scholar
19.Wong-Ng, W. and Cool, L.P., J. Am. Ceram. Soc. 77, 1883 (1994).CrossRefGoogle Scholar
20.Kang, S-J., Kaysser, W.A., Petzow, G., and Yoon, D.N., Powd. Metall. 27, 97 (1984).CrossRefGoogle Scholar
21.Griffith, M.L., Halloran, J. W., and Hoffman, R. T., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
22.Balkin, D.K. and McGinn, P.J., Supercond. Sci. Technol. 7, 612 (1994).CrossRefGoogle Scholar
23.Kim, C-J., Lai, S. H., and McGinn, P. J., Mater. Lett. 19, 185 (1994).CrossRefGoogle Scholar
24.Lambert, P., Dube, D., Gelinas, C., and Arsenault, B., Mater. Lett. 15, 8 (1992).CrossRefGoogle Scholar
25.Morita, M., Tanaka, M., Takebayashi, S., Kimura, K., Miyamoto, K., and Sawano, K., Jpn. J. Appl. Phys. 30, L813 (1991).CrossRefGoogle Scholar
26.Varanasi, C. and McGinn, P. J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
27.Sakai, N., Yoo, S.I., and Murakami, M., J. Mater. Res. 10, 1611 (1995).CrossRefGoogle Scholar
28.Kim, C-J., Lee, H-G., Kim, K-B., and Hong, G-W., J. Mater. Res. 10, 2235 (1995).CrossRefGoogle Scholar
29.Lo, W., Cadwell, D.A., Dung, S-L., and Barter, R. G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
30.Lee, H-Y., Kim, C-J., and Hong, G-W., J. Am. Ceram. Soc. 79, 2912 (1996).CrossRefGoogle Scholar