Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T16:58:11.907Z Has data issue: false hasContentIssue false

Effects of thermal annealing on the microstructural properties of the lower region in ZnO thin films grown on n-Si (001) substrates

Published online by Cambridge University Press:  31 January 2011

J.M. Yuk
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
J.Y. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
T.W. Kim*
Affiliation:
Division of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Korea
D.I. Son
Affiliation:
Department of Information Display Engineering, Hanyang University, Seoul 133-791, Korea
W.K. Choi
Affiliation:
Thin Film Material Research Center, Korea Institute of Science and Technology, Seoul 136-701, Korea
*
a)Address all correspondence to this author. e-mail: twk@hanyang.ac.kr
Get access

Abstract

Transmission electron microscopy (TEM) images, selected-area electron-diffraction patterns, high-resolution TEM images, and x-ray energy dispersive spectroscopy line scans for the ZnO/n-Si (001) heterostructures annealed at 900 °C showed that stacking faults and amorphous layers were formed in the lower region of the ZnO films. The stacking faults existing in the lower region of the ZnO columnar grains originated from the formation of zinc vacancy layers caused by the thermal treatment, resulting in the existence of a tensile strain. The formation of the amorphous layer in the ZnO film was attributed to the accumulation of zinc vacancy layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Service, R.F.: Will UV lasers beat the blues? Science 276, 895 1997CrossRefGoogle Scholar
2Pan, Z.W., Dai, Z.R.Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
3Oba, F., Ohta, H., Sato, Y., Hosono, H., Yamamoto, T.Ikuhara, Y.: Atomic structure of [0001]-tilt grain boundaries in ZnO: A high-resolution TEM study of fiber-textured thin films. Phys. Rev. B 70, 125415 2004CrossRefGoogle Scholar
4Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H.Kawasaki, M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 2005CrossRefGoogle Scholar
5Kim, H., Gilmore, C.M., Jorwitz, J.S., Pigue, A., Murafa, H., Kushto, G.P., Schlaf, R., Kafafi, Z.H.Chrisey, D.B.: Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76, 259 2000CrossRefGoogle Scholar
6Bagnall, D.M., Chen, Y., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y.Goto, T.: Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230 1997CrossRefGoogle Scholar
7Tang, Z.K., Wong, G.K.L., Tu, P., Kawasaki, M., Ohtomo, A., Koinuma, H.Segawa, Y.: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270 1998CrossRefGoogle Scholar
8Soki, T., Hatanaka, Y.Look, D.C.: ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76, 3257 2000Google Scholar
9Kim, S-K., Jeong, S-Y.Cho, C-R.: Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Appl. Phys. Lett. 82, 562 2003CrossRefGoogle Scholar
10Lee, H.S., Lee, J.Y., Kim, T.W.Kim, M.D.: Effect of thermal annealing on the microstructural and optical properties of vertically stacked InAs/GaAs quantum dots embedded in modulation-doped heterostructures. J. Appl. Phys. 94, 6354 2003CrossRefGoogle Scholar
11Yaglioglu, B., Yeom, H-Y.Paine, D.C.: Crystallization of amorphous In2O3–10 wt % ZnO thin films annealed in air. Appl. Phys. Lett. 86, 261908 2005CrossRefGoogle Scholar
12Ogata, K., Kawanishi, T., Maajima, K., Sakurai, K., Fujita, Sz.Fujita, Sg.: ZnO growth using homoepitaxial technique on sapphire and Si substrates by metalorganic vapor phase epitaxy. J. Cryst. Growth 237, 553 2002CrossRefGoogle Scholar
13Ogata, K., Sakurai, K., Fujita, Sz., Fujita, Sg.Matsushige, K.: Effects of thermal annealing of ZnO layers grown by MBE. J. Cryst. Growth 214/215, 312 2000CrossRefGoogle Scholar
14Fang, Z.B., Yan, Z.J., Tan, Y.S., Liu, X.Q.Wang, Y.Y.: Influence of post-annealing treatment on the structure properties of ZnO films. Appl. Surf. Sci. 241, 303 2005CrossRefGoogle Scholar
15Gupta, V.Mansingh, A.: Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 1996CrossRefGoogle Scholar
16Chen, Z.Q., Yamamoto, S., Maekawa, M., Kawasuso, A., Yuan, X.L.Sekiguchi, T.: Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements. J. Appl. Phys. 94, 4807 2003CrossRefGoogle Scholar
17Shin, J.W., Lee, J.Y., No, Y.S., Kim, T.W.Choi, W.K.: Correlation between the atomic structures and the misorientation angles of [0001]-tilt grain boundaries at triple junctions in ZnO thin films grown on Si substrates. Appl. Phys. Lett. 89, 101904 2006CrossRefGoogle Scholar
18Shin, J.W., Lee, J.Y., No, Y.S., Jung, J.H., Kim, T.W.Choi, W.K.: Atomic arrangement variations of [0001]-tilt grain boundaries in ZnO thin films grown on p-Si substrates due to thermal treatment. Appl. Phys. Lett. 90, 181907 2007CrossRefGoogle Scholar
19Jung, Y.S., Kononenko, O., Kim, J.S.Choi, W.K.: Two-dimensional growth of ZnO epitaxial films on c-Al2O3 (0 0 0 1) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular-beam epitaxy. J. Cryst. Growth 274, 418 2005CrossRefGoogle Scholar
20Gerthsen, D., Litvinov, D., Gruber, Th., Kirchner, C.Waag, A.: Origin and consequences of a high stacking fault density in epitaxial ZnO layers. Appl. Phys. Lett. 81, 3972 2002CrossRefGoogle Scholar
21Sun, H.P., Pan, X.Q., Du, X.L., Mei, Z.X., Zeng, Z.Q.Xue, Q.K.: Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified 0001 sapphire surface. Appl. Phys. Lett. 85, 4385 2004CrossRefGoogle Scholar
22Kucheyev, S.O., Williams, J.S., Jagadish, C., Zou, J., Li, G.Titov, A.I.: Effect of ion species on the accumulation of ion-beam damage in GaN. Phys. Rev. B 64, 035202 2001CrossRefGoogle Scholar
23Kucheyev, S.O., Williams, J.S., Zou, J., Li, G., Jagadish, C.Titov, A.I.: Effect of ion species on implantation-produced disorder in GaN at liquid-nitrogen temperature. Nucl. Instrum. Methods B 190, 782 2002CrossRefGoogle Scholar
24Ryoken, H., Sakaguchi, I., Ohashi, N., Sekiguchi, T., Hishita, S.Haneda, H.: Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method. J. Mater. Res. 20, 2866 2005CrossRefGoogle Scholar
25Titov, A.I.Kucheyev, S.O.: Ion beam induced amorphous–crystalline phase transition in Si: Quantitative approach. Nucl. Instrum. Methods B 168, 375 2000CrossRefGoogle Scholar