Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T11:28:03.509Z Has data issue: false hasContentIssue false

Effects of TiO2 on the microstructure and mechanical properties of Al2O3/ZrO2 composites

Published online by Cambridge University Press:  31 January 2011

Chii-Shyang Hwang*
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, Republic of China
Yu-Jing Chang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, Republic of China
*
a) Address all correspondence to this author.
Get access

Abstract

The microstructure and mechanical properties of hot-pressed zirconia-toughened alumina (ZTA), fabricated from the ZTA powders containing (Zr, Ti)O2 in Ar gas were investigated. In hot-pressed ZTA, the presence of Ti concentration in the grains of Al2O3 or (Zr, Ti)O2 was analyzed by the energy dispersive spectroscopy (EDS) attached to the analytical electron microscope (AEM) apparatus. Experimental results showed that some Ti ions diffused to the grain boundary and into the Al2O3 grains, thereby enhancing the densification of hot-pressed ZTA. It was possible to retain tetragonal ZrO2 at room temperature in the ZTA specimens containing ≥5.5 mol% TiO2 and hot pressed at 1350 °C for 1 h. The bending strength and toughness of hot-pressed ZTA were enhanced by the addition of TiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mondal, B., Cattopadhay, A.B., Virkar, A., and Paul, A., Wear 156, 365 (1992).CrossRefGoogle Scholar
2.Wang, J. and Stevens, R., J. Mater. Sci. 24, 3421 (1989).Google Scholar
3.Inamura, S., Miyamoto, M., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. Lett. 12, 1368 (1993).Google Scholar
4.Becher, P. F., J. Am. Ceram. Soc. 64, 37 (1981).Google Scholar
5.Fegley, B. Jr., White, P., and Bowen, H. K., J. Am. Ceram. Soc. 68, C60 (1985).Google Scholar
6.Osendi, M. I. and Moya, J. S., J. Mater. Sci. Lett. 7, 15 (1988).Google Scholar
7.Osendi, M.I., Bender, B.A., and Lewis, D., Adv. Ceram. Mater. 3, 563 (1988).Google Scholar
8.Hori, S., Yoshimura, M., Somiya, S., and Kaji, H., J. Mater. Sci. Lett. 3, 242 (1984).Google Scholar
9.Tsukuma, K., Ueda, K., and Matsushita, K., J. Am. Ceram. Soc. 68, C56 (1985).Google Scholar
10.Lange, F. F., J. Mater. Sci. 17, 247 (1982).Google Scholar
11.Hwang, C. S. and Lin, W. H., J. Ceram. Soc. Jpn. 99, 271 (1991).Google Scholar
12.Hwang, C. S. and Tsaur, S.C., J. Mater. Sci. 27, 6791 (1992).CrossRefGoogle Scholar
13.Hwang, C. S., Tsaur, S.C., and Chang, Y. J., J. Ceram. Soc. Jpn. 102, 1111 (1994).CrossRefGoogle Scholar
14.Chang, Y. J. and Hwang, C. S., in Proceedings of the 1994 Annual Conference of the Chinese Society for Materials Science (KauShyung, Taiwan, 1994), p. 276.Google Scholar
15.Niihara, K., Morena, R., and Hasselman, D. P. H., J. Mater. Sci. Lett. 1, 13 (1982).Google Scholar
16.Brook, R. J., J. Am. Ceram. Soc. 55, 114 (1972).Google Scholar
17.Hamano, K., Hwang, C.S., Nakagawa, Z., and Ohya, Y., Yogyo-Kyokai-Shi (J. Ceram. Soc. Jpn.) 94, 505 (1986).CrossRefGoogle Scholar
18.Pandolfelli, V. C., Rodrigues, J. A., and Stevens, R., J. Mater. Sci. 26, 5327 (1991).Google Scholar
19.Ruhle, M., Evans, A.G., McMeeking, R. M., Charalambides, P. G., and Hutchinson, J.W., Acta Metall. 35, 2701 (1987).Google Scholar
20.Langlois, R. and Konsztowicz, K. J., J. Mater. Sci. Lett. 11, 1454 (1992).Google Scholar