Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T20:13:15.387Z Has data issue: false hasContentIssue false

Electrochemical Synthesis and Characterization of La2CuO4+δ Single Crystals

Published online by Cambridge University Press:  31 January 2011

D. P. Scarfe
Affiliation:
Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, and Department of Chemistry and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
X. Xiong
Affiliation:
Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
W. J. Zhu
Affiliation:
Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
P. H. Hor
Affiliation:
Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
S. C. Moss
Affiliation:
Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
A. J. Jacobson
Affiliation:
Department of Chemistry and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77004
Get access

Abstract

An electrochemical oxidation technique was used to obtain bulk oxidized La2CuO4+δ single crystals from the as-grown crystals. Samples were prepared by galvanostatic oxidation with currents in the range 5–10 μA and with different charging times. Some samples were annealed at 110 °C in flowing oxygen. Small high-quality crystals were obtained from electrochemically oxidized larger crystals that contained microcracks. Transmission x-ray Laue photography and rocking curve measurements for several fundamental diffraction peaks were used to confirm the crystal quality. The Tc and bulk magnetic properties of samples at different stages in the oxidation process are reported. After annealing at 110 °C, a 15 K transition was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kudo, T., Obayashi, H., and Gejo, T., J. Electrochem. Soc. 122, 159 (1975).CrossRefGoogle Scholar
2.van Buren, F.R., Broers, G.H.J, Boesveld, C., and Bouman, A.J., J. Electroanal. Chem. 87, 381 (1978).CrossRefGoogle Scholar
3.Wattiaux, A., Fournès, L., Demourges, A., Bernaben, N., Grenier, J. C., and Pouchard, M., Solid State Commun. 77, 489 (1991).CrossRefGoogle Scholar
4.Wattiaux, A., Park, J. C., Grenier, J. C., and Pouchard, M., C. R. Acad. Sci. Paris Series II 310, 1047 (1990).Google Scholar
5.Chou, F.C., Cho, J.H., and Johnston, D. C., Physica C 197, 303 (1992).CrossRefGoogle Scholar
6.Demourges, A., Wattiaux, A., Grenier, J.C., Pouchard, M., Soubeyroux, J.L., Dance, J.M., and Hagenmuller, P., J. Solid State Chem. 105, 458 (1993).CrossRefGoogle Scholar
7.Casañ-Pastor, N., Gomez-Romero, P., Fuertes, A., Navaro, J. M., Sanchis, M. J., and Ondoño, S., Physica C 216, 478 (1993).CrossRefGoogle Scholar
8.Grenier, J. C., Arrouy, G., Locquet, J.P., Monroux, C., Pouchard, M., Villesuzanne, A., and Wattiaux, A., in Proceedings of the 2nd Workshop on Phase Separation in Cuprate Superconductors, edited by Sigmund, E. and Müller, K. A. (Springer-Verlag, Berlin and Heidelberg, 1994), p. 236.CrossRefGoogle Scholar
9.Crawford, M.K., Harlow, R.L., McCarron, E. M., Herron, N., Farneth, W.E., Donahue, W. J., Parkinson, B. A., and Shirber, J., J. Phys. Chem. Solids 56, 1469 (1995).CrossRefGoogle Scholar
10.Yazdi, I., Bhavaraju, S., DiCarlo, J. F., Scarfe, D. P., and Jacobson, A. J., Chem. Mater. 6, 2078 (1994).CrossRefGoogle Scholar
11.Bhavaraju, S., DiCarlo, J. F., Scarfe, D. P., Jacobson, A. J., and Buttrey, D. J., Solid State Ionics 86–88, 825 (1996).CrossRefGoogle Scholar
12.Jorgensen, J. D., Dabrowski, B., Pei, S., Richards, D.R., and Hinks, D. G., Phys. Rev. B 40, 2187 (1989).CrossRefGoogle Scholar
13.Schirber, J. E., Morosin, B., Merrill, R. M., Hlava, P. F., Venturini, E. L., Kwak, J. F., Nigrey, P. J., Baughman, R. J., and Ginley, D. S., Physica C 152, 121 (1988).CrossRefGoogle Scholar
14.Rudolf, P. and Schöllhorn, R., J. Chem. Soc. Chem. Commun., 1158 (1992).CrossRefGoogle Scholar
15.Wells, B. O., Birgeneau, R. J., Chou, F. C., Endoh, Y., Johnston, D. C., Kastner, M. A., Lee, Y. S., Shirane, G., Tranquada, J. M., and Yamada, K., Z. Phys. B 100, 535 (1996).CrossRefGoogle Scholar
16.Kirczenow, G., in Graphite Intercalation Compounds I, edited by Zabel, H. and Solin, S. A. (Springer-Verlag, New York, 1990), p. 59.CrossRefGoogle Scholar
17.Xiong, X., Wochner, P., Moss, S.C., Cao, Y., Koga, K., and Fujita, M., Phys. Rev. Lett. 76, 2997 (1996).CrossRefGoogle Scholar
18.Xiong, X., Zhu, Q., Li, Z. G., Moss, S. C., Feng, H. H., Hor, P. H., Cox, D. E., Bhavaraju, S., and Jacobson, A. J., J. Mater. Res. 11, 2121 (1996).CrossRefGoogle Scholar
19.Feng, H. H., Li, Z. G., Hor, P. H., Bhavaraju, S., DiCarlo, J.F., and Jacobson, A. J., Phys. Rev. B 51, 16 499 (1995).Google Scholar
20.Hor, P. H., Feng, H. H., Li, Z. G., DiCarlo, J. F., Bhavaraju, S., and Jacobson, A. J., J. Phys. Chem. Solids 57, 1061 (1996).CrossRefGoogle Scholar
21.Koga, K., Fujita, M., Ohshima, K., and Nishihara, Y., J. Phys. Soc. Jpn. 64, 3365 (1995).CrossRefGoogle Scholar
22.Feng, H. H., Ph.D. Thesis, University of Houston, Houston, TX (1996).Google Scholar
23.Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J., and Shelton, R. N., Phys. Rev. B 38, 4596 (1988).CrossRefGoogle Scholar
24.Oda, M., Ohguro, T., Yamada, N., and Ido, M., J. Phys. Soc. Jpn. 58, 1137 (1989).CrossRefGoogle Scholar
25.Xiong, Q., Chu, J. W., Sun, Y. Y., Feng, H. H., Bud'ko, S., Hor, P. H., and Chu, C. W., Phys. Rev. B 46, 581 (1992).CrossRefGoogle Scholar
26.Xiong, X., Scarfe, D. P., Wochner, P., Moss, S. C., Jacobson, A. J., Zhu, W. J., and Hor, P. H., unpublished.Google Scholar