Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T03:21:23.604Z Has data issue: false hasContentIssue false

Energy absorption of a polyacrylic acid partial sodium salt-modified nanoporous system

Published online by Cambridge University Press:  01 May 2006

Falgun B. Surani
Affiliation:
Department of Civil Engineering, University of Akron, Akron, Ohio 44325-3905
Yu Qiao*
Affiliation:
Department of Civil Engineering, University of Akron, Akron, Ohio 44325-3905
*
a) Address all correspondence to this author. e-mail: yqiao@uakron.edu
Get access

Abstract

We experimentally investigated the pressure-induced infiltration of a nanoporous silica-based energy absorption system modified by polyacrylic acid partial sodium salt (sodium polyacrylate). Under ambient conditions, sodium polyacrylate forms a soft matter with water. As the hydrostatic pressure increases, the dehydration of the soft matter occurs and the nanopores are filled by water molecules, accompanied by a significant energy dissipation. This result has fundamental scientific interest for understanding behaviors of confined liquids and great technological importance for developing advanced solid-like protective/damping materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Claesson, P.M., Poptoshev, E., Blomberg, E., Dedinaite, A.: Polyelectrolyte-mediated surface interactions. Adv. Colloid Interface Sci. 114, 173 (2005).CrossRefGoogle ScholarPubMed
2.Colby, R.H.: Polyelectrolyte interactions with surfactants and proteins, in Thirteenth International Congress on Rheology, Vol. 1 (Cambridge, UK, 2000) p. 414.Google Scholar
3.Bordi, F., Cametti, C., Colby, R.H.: Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J. Phys.: Condens. Matter 16, R1423 (2004).Google Scholar
4.Podgornik, R.: Polyelectrolyte-mediated bridging interactions. J. Polym. Sci. B 42, 3539 (2004).CrossRefGoogle Scholar
5.Kong, X., Qiao, Y.: Improvement of recoverability of a nanoporous energy absorption system by using chemical admixture. Appl. Phys. Lett. 86, 151919 (2005).CrossRefGoogle Scholar
6.Kong, X., Surani, F.B., Qiao, Y.: Effects of addition of ethanol on the infiltration pressure of a mesoporous silica. J. Mater. Res. 20, 1042 (2005).CrossRefGoogle Scholar
7.Kong, X., Qiao, Y.: Thermal effect on pressure induced infiltration of a nanoporous system. Philos. Mag. Lett. 85, 331 (2005).CrossRefGoogle Scholar
8.Rovere, M., Gallo, P.: Effects of confinement on static and dynamical properties of water. Eur. Phys. J. E 12, 77 (2003).CrossRefGoogle ScholarPubMed
9.Gallo, P., Pellarin, R., Rovere, M.: Slow dynamics of a confined supercooled binary mixture. II. Q space analysis. Phys. Rev. E 68, 061209 (2003).CrossRefGoogle ScholarPubMed
10.Floquet, N., Coulomb, J.P., Dufau, N., Andre, G., Kahn, R.: Confined water in mesoporous MCM-41 and nanoporous AIPO(4)-5: Structure and dynamics. Adsorption—Journal of the International Adsorption Society 11, 139 (2005).CrossRefGoogle Scholar
11.Siperstein, F.R., Gubbins, K.E.: Influence of synthesis conditions on surface heterogeneity of M41 type materials studied with lattice Monte Carlo. Stud. Surf. Sci. Catal. 144, 647 (2002).CrossRefGoogle Scholar
12.Wasan, D.T., Nikolov, A.D.: Spreading of nanofluids on solids. Nature 423, 156 (2003).CrossRefGoogle ScholarPubMed
13.Buchholz, F.L., Graham, A.T.: Modern Superabsorbent Polymer Technology (Wiley-VCH, New York, 1998).Google Scholar
14.Dautzenberg, H., Jaeger, W., Kotz, J., Philipp, B., Seidel, Ch., Stscherbina, D.: Polyelectrolytes (Hanser, Munich, 1994).Google Scholar
15.Hartland, S.: Surface and Interfacial Tension: Measurement, Theory, and Applications (Marcel Dekker, New York, 2004).CrossRefGoogle Scholar