Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-23T04:15:09.693Z Has data issue: false hasContentIssue false

Energy losses of ions implanted in matter

Published online by Cambridge University Press:  31 January 2011

J. H. Liang
Affiliation:
Department of Nuclear Engineering and Engineering Physics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
K. Y. Liao
Affiliation:
Department of Nuclear Engineering and Engineering Physics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
Get access

Abstract

A set of simple and accurate formulae for the first four moments of nuclear and electronic energy losses is proposed. A new variable is introduced to include the finite maximum-impact-parameter effect in the nuclear stopping process, which is assumed to be infinite in most studies. A critical energy at which the electronic energy loss is equal to the nuclear energy loss is also defined. It determines whether the nuclear or the electronic stopping process is the dominant mechanism in terms of incident-ion energy. The critical energy increases for heavy ions implanted in heavy target materials during the first moment of energy loss. The second moment of electronic energy loss is important only for light ions implanted at high ion energies. The third and fourth moments of nuclear energy loss are much larger than those of the electronic energy loss for all ion-target combinations. Theoretical predications of the projected ranges and range stragglings for gold ions implanted in carbon films are close to the experimental data when these proposed four moments of nuclear and electronic energy losses are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bohr, N., Philos. Mag. 25, 10 (1913).CrossRefGoogle Scholar
2.Hofker, W. K., Philips Research Reports 8, 41 (1975).Google Scholar
3.Ryssel, H., Lang, G., Biersack, J.P., Müller, K., and Kruger, W., IEEE Trans. El. Dev. ED-27, 1484 (1980).CrossRefGoogle Scholar
4.Bowyer, M. D. J., Ashworth, D. G., and Oven, R., Solid-State Electron. 35, 1151 (1992).CrossRefGoogle Scholar
5.Kendall, M. G. and Stuart, A., The Advanced Theory of Statistics (Charles Griffin, London, 1958).Google Scholar
6.Torrens, I. M., Interatomic Potentials (Academic Press, New York, 1972).CrossRefGoogle Scholar
7.Wilson, W. D., Haggmark, L. G., and Biersack, J. P., Phys. Rev. 15B, 58 (1977).Google Scholar
8.Biersack, J. P. and Ziegler, J.F., Springer Series in Electrophysics 10, 122 (1982).Google Scholar
9.Robinson, M. T. and Torrens, I.M., Phys. Rev. B9, 5008 (1974).CrossRefGoogle Scholar
10.Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
11.Ziegler, J. F., Biersack, J. P., and Littmark, U., Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985), Vol. 1.Google Scholar
12.Brandt, W. and Kitagawa, M., Phys. Rev. B25, 5631 (1982).CrossRefGoogle Scholar
13.Ziegler, J. F., TRIM-95: The Transport of Ions in Matter, Version 95.4 (IBM-Research, Yorktown, 1995).Google Scholar
14.Bonderup, E. and Hvelplund, P., Phys. Rev. A4, 562 (1971).CrossRefGoogle Scholar
15.Bohr, N., Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 18 (8), (1948).Google Scholar
16.Pines, D. and Bohm, D., Phys. Rev. 85, 338 (1952).CrossRefGoogle Scholar
17.Liang, J. H. and Kulcinski, G. L., J. Nucl. Mater. 183, 201 (1991).Google Scholar
18.Grande, P. L., Fichtner, P. F. P., Behar, M., Livi, R. P., Zawislak, F. C., Biersack, J.P., Fink, D., and Mertens, P., Nucl. Instrum. Methods B19/20, 25 (1987).CrossRefGoogle Scholar
19.Grande, P. L., Fichtner, P. F. P., Behar, M., and Zawislak, F. C., Nucl. Instrum. Methods B33, 122 (1988).CrossRefGoogle Scholar
20.Grande, P.L., Behar, M., Biersack, J.P., and Zawislak, F.C., Nucl. Instrum. Methods B45, 689 (1990).CrossRefGoogle Scholar
21.Grande, P. L., Zawislak, F. C., Fink, D., and Behar, M., Nucl. Instrum. Methods B61, 282 (1991).CrossRefGoogle Scholar
22.Liang, J. H. and Liao, K. Y., Nucl. Instrum. Methods (unpublished).Google Scholar