Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T21:27:41.087Z Has data issue: false hasContentIssue false

Enhancing adhesion between metals or epoxy and polytetrafluoroethylene by ion assisted reaction

Published online by Cambridge University Press:  31 January 2011

S. K. Koh
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
J. W. Seok
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
S. C. Choi
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
W. K. Choi
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
H. J. Jung
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Get access

Abstract

Ion irradiation on polytetrafluoroethylene (PTFE) has been carried out to improve adhesions to metals and to adhesive cements. Argon ions were irradiated on the polymer, by varying the amount of Ar+ from 1 × 1014 ions/cm2 to 1 × 1017 ions/cm2 at 1 keV, and 4 ml/min of oxygen gas flowed near the polymer surface during the ion irradiation. The wetting angle of water on the PTFE surface was changed from 100° to 70–150°, depending on the ion beam condition. The changes of the wetting angle and effects of Ar+ irradiation in oxygen environment were explained by the changes in surface morphology due to the ion beam irradiation onto PTFE, and formation of a hydrophilic group due to a reaction between the irradiated polymer chain and the blown oxygen. Strongly enhanced adhesion is explained by interlock mechanism, formation of electron acceptor groups on the modified PTFE, and interfacial chemical reactions between the irradiated surface and the deposited materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rao, G. R. and Lee, E. H., J. Mater. Res. 11, 2661 (1996).CrossRefGoogle Scholar
2.Puglisi, O., Licciardello, A., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B19/20, 865 (1987).CrossRefGoogle Scholar
3.Baglin, J. E. E., Nucl. Instrum. Methods B65, 119 (1992).CrossRefGoogle Scholar
4.Iacana, F., Garilli, M., Marletta, G., Puglisi, O., and Piganataro, S., J. Mater. Res. 6, 861 (1991).CrossRefGoogle Scholar
5.Griffith, J. E., Qiu, Y., and Tombrello, T. A., Nucl. Instrum. Methods B198, 607 (1982).CrossRefGoogle Scholar
6.Jacobson, S., Jonssen, B., and Sundqvist, B., Thin Solid Films 107, 89 (1983).CrossRefGoogle Scholar
7.Ingemarsson, P. A., Keane, M. P., and Gelius, U., J. Appl. Phys. 66, 3548 (1989).CrossRefGoogle Scholar
8.Loh, I. H., Hirvonen, J. K., Martin, J. R., Revesz, P., and Boyd, C., in Electronic Packaging Materials Science III, edited by Jaccodine, R., Jackson, K. A., and Sundahl, R. C. (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), p. 241.Google Scholar
9.Sofield, C. J., Woods, C. J., Wild, C., Riviere, J. C., and Welch, L. S., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Elsevier Science Publishing, New York, 1984), p. 197.Google Scholar
10.Ingemarsson, P. A., Eriksson, T., Wappling, R., and Possnert, G., J. Adhesion Sci. Technol. 3, 503 (1989).CrossRefGoogle Scholar
11.Chang, C. A., Baglin, J. E. E., Schrott, A. G., and Lin, K. C., Appl. Phys. Lett. 51, 103 (1987).CrossRefGoogle Scholar
12.Wintergill, M. C., Nucl. Instrum. Methods B1, 595 (1984).CrossRefGoogle Scholar
13.Venkatesan, T., Calcagno, L., Ellman, B. S., and Foti, G., Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, New York, 1987), pp. 301379.Google Scholar
14.Koh, S. K., Song, S. K., Choi, W. K., Jung, H. J., and Han, S. N., J. Mater. Res. 10, 2390 (1995).CrossRefGoogle Scholar
15.Choi, W. K., Koh, S. K., and Jung, H. J., J. Vac. Sci. Technol. A 14, 2366 (1996).CrossRefGoogle Scholar
16.Koh, S. K., Park, S. C., Kim, S. R., Choi, W. K., Jung, H. J., and Pae, K. D., J. Appl. Polym. Sci., 1913 (1997).3.0.CO;2-L>CrossRefGoogle Scholar
17.Youxian, D. and Griesser, H. J., Polymer 32, 1126 (1987).CrossRefGoogle Scholar
18.Clark, D. T. and Hutton, D. R., J. Polym. Sci. A25, 2643 (1987).CrossRefGoogle Scholar
19.Koh, S. K., Seok, J. W., Choi, S. C., Choi, W. K., and Hung, H. J., private communication.Google Scholar
20.Ginnard, C. R. and Riggs, W. M., Anal. Chem. 44, 1310 (1972).CrossRefGoogle Scholar
21.Fabish, T. J. and Duke, C. B., J. Appl. Phys. 48, 4256 (1977).CrossRefGoogle Scholar
22.Burkstrand, J. M., J. Appl. Phys. 52, 4795 (1981).CrossRefGoogle Scholar
23.Nakamae, K., Tanigawa, S., and Matsumoto, T., Metallized Plastics 1, edited by Mittal, K. L. and Susko, J. R. (Plenum Press, New York, 1989), pp. 235245.CrossRefGoogle Scholar
24.White, R. C., Haight, R., Silverman, B. D., and Ho, P. S., Appl. Phys. Lett. 51, 17 (1987).CrossRefGoogle Scholar