Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T12:25:58.315Z Has data issue: false hasContentIssue false

Experimental investigation of Zr-rich Zr–Zr2Ni–(Zr,Ti)2Ni ternary eutectic system

Published online by Cambridge University Press:  31 January 2011

Seung-Yong Shin*
Affiliation:
Eco Materials & Processing Department, Korea Institute of Industrial Technology, Yeonsu-Gu, Incheon 406-840, Korea
Chi-Whan Lee
Affiliation:
Department of Metallurgical Engineering, Inha University, Nam-Gu, Incheon 402-751, Korea
*
a) Address all correspondence to this author. e-mail: seung@kitech.re.kr
Get access

Abstract

As potential substitutes for traditional Ti(Zr)–Cu–Ni-based brazing metals for high strength Ti alloys as well as a study for metallic glass, Zr–Ti–Ni-based alloys have been attracting much attention recently. In this study, the melting temperatures and microstructures of the Zr(Ti)-rich Zr–Ti–Ni alloys with Ni content below 33.3 at.% were systematically studied. A ternary deep eutectic alloy consisting of three phases was found at the composition of Zr50Ti26Ni24 with a solidus temperature of 798 °C and a liquidus temperature of 809 °C, which are significantly lower than the Zr2Ni–(Zr,Ti)2Ni pseudobinary eutectic melting temperature of 850 °C. This ternary eutectic reaction can be presented as L → α-(Zr/Ti) solid solution + Zr2Ni + ternary Laves (Zr,Ti)2Ni.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wells, A.F.: Structural Inorganic Chemistry (Oxford University Press, Oxford, 1984), p. 1382.Google Scholar
2Rabinkin, A., Liebermann, H., Pounds, S., Taylor, T., Reidinger, F., and Siu-Ching, L.: Amorphous Ti–Zr-base MetglasW brazing filler metals. Scr. Metall. Mater. 25, 399 (1991).CrossRefGoogle Scholar
3Onzawa, T., Suzumura, A., and Ko, M.: Brazing of titanium using low melting point based filler metals. Welding J. 462 (1990).Google Scholar
4Shapiro, A. and Rabinkin, A.: State of the art of titanium-based brazing filler metals. Welding J. 36 (2003).Google Scholar
5Hegner, F., Schmidt, E., Klahn, T., Reimann, P., Breitenstein, H., and Messmer, S.: Ternary active brazing based on a zirconiumnickel alloy. U.S., Patent No. 5 334 344 (Aug. 2, 1994).Google Scholar
6Molokanov, V.V. and Chebotnikov, V.N.: Quasicrystals and amorphous alloys in Ti–Zr–Ni system–Glassforming ability, structure and properties. J. Non-Cryst. Solids 117/118, 789 (1990).CrossRefGoogle Scholar
7Yi, S. and Kim, D.H.: Stability and phase transformations of icosahedral phase in a 41.5Zr41.5Ti17Ni alloy. J. Mater. Res. 15, 892 (2000).CrossRefGoogle Scholar
8Murty, B.S., Kim, W.T., Kim, D.H., and Hono, K.: Nanocrystalline icosahedral phase formation in melt spun Ti–Zr–Ni alloys. Mater. Trans. 42, 372 (2001).CrossRefGoogle Scholar
9Yi, S., Kim, W.T., Kim, D.H., Oh, S.H., and Park, C.G.: Development of nanocrystals in an amorphous alloy Zr47Ni30Ti23. J. Mater. Sci. 36, 5101 (2001).CrossRefGoogle Scholar
10Lee, G., Croat, T., Gangopadhyay, A., and Kelton, K.: Icosahedralphase formation in as-cast Ti–Zr–Ni alloys. Philos. Mag. Lett. 82, 199 (2002).CrossRefGoogle Scholar
11Qiang, J.B., Wang, Y.M., Wang, D.H., Kramer, M., and Dong, C.A.: Ti–Zr–Ni bulk quasicrystals prepared by casting. Philos. Mag. Lett. 83, 467 (2003).CrossRefGoogle Scholar
12Qiang, J.B., Wang, Y.M., Wang, D.H., Kramer, M., Thiel, P., and Dong, C.: Quasicrystals in the Ti–Zr–Ni alloy system. J. Non-Cryst. Solids 334/335, 223 (2004).CrossRefGoogle Scholar
13Liu, X.J., Hui, X.D., Jiao, J.T., and Chen, G.L.: Formation and crystallization of Zr–Ni–Ti metallic glass. Trans. Nonferrous Met. Soc. China 14, 858 (2004).Google Scholar
14Chang, E. and Chen, C.H.: Low-melting-point titanium-base brazing alloys. 1. Characteristics of two-, three-, and four-component filler metals. J. Mater. Eng. Perform. 6, 797 (1997).Google Scholar
15Peker, A.: Formation and characterization of bulk metallic glasses. Ph.D., Thesis, California Institute of Technology, 1994.Google Scholar
16Lin, C-H.: Bulk glass formation and crystallization of Zr-Ti based alloys. Ph.D., Thesis, California Institute of Technology, 1997.Google Scholar
17Villars, P., Prince, A., and Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1995).Google Scholar
18Massalski, T.B.: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).Google Scholar
19Chebotnikov, V.N., Molokanov, V.V., Rubina, Y.B., and Kovneristyi, Y.K.: Structure, properties and glass-forming capacity of amorphous alloys of the Ti2Ni–Zr2Ni section of the Ti–Zr–Ni system. Phys. Met. Metall. 68, 127 (1989).Google Scholar
20Botstein, O. and Rabinkin, A.: Induction brazing of Ti–6Al–4V alloy with amorphous 25Ti–25Zr–50Cu brazing filler metal. Mater. Sci. Eng., A 188, 305 (1994).CrossRefGoogle Scholar
21Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar