Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T15:28:57.913Z Has data issue: false hasContentIssue false

Explosive crystallization phenomena in SOI structures

Published online by Cambridge University Press:  31 January 2011

H. D. Geiler
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
M. Wagner
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
E. Glaser
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
G. Andrä
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
D. Wolff
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
G. Götz
Affiliation:
Friedrich Schiller Universität, Sektion Physik, Max-Wien-Platz I, DDR-6900 Jena, German Democratic Republic
Get access

Abstract

Using the double pulse technique with two synchronized lasers, we studied the conditions of ignition and evolution of explosive crystallization. The structure of the resulting crystallized layers is analyzed by TEM. Results of calculations are reported describing the development of the two phase fronts: amorphous/molten and molten/crystalline. It is shown that the system takes more than 500 ns to reach the steady state. The experimental results support the model of creating first a melt nucleus in the amorphous layer followed by the formation of the crystalline nucleus in the molten sphere. Competitive solid phase nucleation and growth in the amorphous layer limit the temperature-time interval of melt nucleation. Defined explosively crystallized areas in laterally structured SOI layers are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gotzberger, A.Z. Physik 142, 182 (1955).CrossRefGoogle Scholar
2Aleksandrov, L.N. and Edelman, F. L.Surf. Sci. 86, 222 (1979).Google Scholar
3Takamori, T.Messier, R. and Roy, R.Appl. Phys. Lett. 20, 201 (1972).CrossRefGoogle Scholar
4Leamy, H.J.Brown, W. L.Celler, G. K.Foti, G.Gilmer, G.H. and Fan, J.C.C.Appl. Phys. Lett. 38, 137 (1981).CrossRefGoogle Scholar
5Thompson, M. O.Galvin, G. J.Mayer, J. W.Peercy, P. S.Poate, J. M.Jacobson, D. C.Cullis, A. G. and Chew, N. G.Phys. Rev. Lett. 52, 2320 (1984).CrossRefGoogle Scholar
6Bruiness, J.J.P.van Hal, R.P.M., Koek, B.H.Viegers, M. P. A. and Boots, H.M.J. in MRS Symp. Proc. Beam-Solid Interactions and Transient Processes, edited by Picraux, S.T.Thompson, M.O. and Williams, J.S. (MRS, Pittsburgh, PA, 1987), Vol. 74, p. 91.Google Scholar
7Auvert, G. and Bensahel, D. in MRS Symp. Proc. Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J.Brown, W. L. and Lemons, R. A. (North Holland, Amsterdam, 1983), Vol. 13, p. 165.Google Scholar
8Geiler, H.D.Glaser, E.Gotz, G. and Wagner, M.J. Appl. Phys. 59, 3091 (1986).CrossRefGoogle Scholar
9Andra, G.Geiler, H. D.Glaser, E.Gotz, G.Wagner, M. and Heinig, K. H.Nucl. Instrum. Methods B19/20, 571 (1987).Google Scholar
10Wagner, M.Geiler, H.D. and Gétz, G., phys. stat. sol. (a) 73, K161 (1982).Google Scholar
10Wagner, M.Geiler, H.D. and Gotz, G.phys. stat. sol. (a) 92, 413 (1985).Google Scholar
12Gilmer, G. H. and Leamy, H. J. in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic Press, New York, 1980), p. 227.CrossRefGoogle Scholar
13Poate, J.M.Nucl. Instrum. Methods 209/210, 211 (1983).CrossRefGoogle Scholar
14Bostanjoglo, O. and Endruschat, F. E.phys. stat. sol. (a) 91, 17 (1985).Google Scholar
15Bostanjoglo, O.Tornov, R. P. and Tornov, W.Ultramicroscopy 21, 367 (1987).CrossRefGoogle Scholar
16Aleksandrov, L.N.phys. stat. sol. (a) 76, 179 (1983).Google Scholar
17Narayan, J. and White, C. W.Appl. Phys. Lett. 44, 35 (1984).CrossRefGoogle Scholar
18Narayan, J.Pennycook, S. J.Fathy, D. and Holland, O. W.J. Vac. Sci. Technol. A2, 1495 (1984).Google Scholar
19Andra, G.Glaser, E.Wagner, M.Geiler, H.D.Gotz, G.Heinig, K. H. and Hennig, K. in Proc. E-MRS 1986, edited by Fredricksson, H.Kurz, W.Lesoult, G. and Sahm, P. (les edition de physique, les Ulis, 1987), Vol. 15, p. 157.Google Scholar
20Wood, R. F. and Geist, G. A.Phys. Rev. B34, 2606 (1986).Google Scholar
21Kashchiev, D.Cryst. Res. Technol. 19, 1413 (1984).CrossRefGoogle Scholar
22Volmer, M.Kinetik der Phasenbildung (Th. Steinkopff Dresden, 1939).Google Scholar
23Toshev, S.Homogeneous Nucleation in Crystal Growth: An Introduction, edited by Hartman, P. (North Holland, Amsterdam, 1973), p. 1.Google Scholar