Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T11:30:11.404Z Has data issue: false hasContentIssue false

Fabrication and properties of arrays of superconducting nanowires

Published online by Cambridge University Press:  31 January 2011

S. Dubois
Affiliation:
Unité PCPM, 1 Place Croix du Sud, B-1348 Louvain la Neuve, Belgium
A. Michel
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630, Bd 3-Téléport 2-BP 179, 86960 Futuroscope Cedex, France
J. P. Eymery
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630, Bd 3-Téléport 2-BP 179, 86960 Futuroscope Cedex, France
J. L. Duvail
Affiliation:
Unité PCPM, 1 Place Croix du Sud, B-1348 Louvain la Neuve, Belgium
L. Piraux
Affiliation:
Unité PCPM, 1 Place Croix du Sud, B-1348 Louvain la Neuve, Belgium
Get access

Abstract

We report on the fabrication and structural characterization of arrays of superconducting nanowires by electroplating lead into the nanopores of track-etched polymer membranes. The diameters of the lead nanowires range from 400 down to 70 nm, whereas their length is about 20 μm. Large enhancement of the critical field has been observed in good agreement with the Ginsburg–Landau–Silin theory. By comparing the predicted critical field enhancement for thin cylinders with experimental results, we have extracted the effective penetration depth. The dependence of the effective penetration depth and electron mean free path on the wire diameter is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Williams, W.D. and Giordano, N., Phys. Rev. B 36, 8146 (1986).CrossRefGoogle Scholar
2.Piraux, L., George, J. M., Despres, J. F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 65, 2484 (1994);CrossRefGoogle Scholar
Blondel, A., Meir, J. P., Doudin, B., and Ansermet, J. Ph., Appl. Phys. Lett. 65, 3020 (1994).CrossRefGoogle Scholar
3. For recent works see Wernsdorfer, W., Doudin, B., Mailly, D., Hasselbach, K., Benoit, A., Meier, J., Ansermet, J. Ph., and Barbara, B., Phys. Rev. Lett. 77, 1873 (1996);CrossRefGoogle Scholar
Ferré, R., Ounadjela, K., George, J.M., Piraux, L., and Dubois, S., Phys. Rev. B 56, 14066 (1997).CrossRefGoogle Scholar
4.Ginsburg, V. L., J. Exp. Theoret. Phys. 34, 113 (1958).Google Scholar
5.Silin, V. P., Zhur. Eksptl. i Teort. Fiz. 21, 1330 (1951).Google Scholar
6.Lutes, O. S., Phys. Rev. 105, 1451 (1957).CrossRefGoogle Scholar
7.Pontius, R. B., Philos. Mag. 24, 787 (1937).CrossRefGoogle Scholar
8.Appleyard, E.T. S., Bristow, J.R., London, H. and Misener, A.D., Proc. R. Soc. London A172, 540 (1939).Google Scholar
9.Schoenberg, D., Proc. R. Soc. London A175, 49 (1940).Google Scholar
10.Pippard, A.B., Proc. R. Soc. London A216, 547 (1957).Google Scholar
11.Tinkham, M., Introduction to Superconductivity, 2nd ed. (McGraw-Hill, Inc., New York, 1996), pp. 100104.Google Scholar
12.Mühge, Th., Garif'yanov, N. N., Goryunov, Yu. V., Khaliullin, G. G., Tagirov, L.R., Westerholt, K., Garifullin, I.A., and Zabel, H., Phys. Rev. Lett. 77, 1857 (1996).CrossRefGoogle Scholar
13.Demler, E.A., Arnold, G. B., and Beasley, M. R., Phys. Rev. B 55, 15174 (1997).CrossRefGoogle Scholar
14. See, for example, Ferain, E. and Legras, R., Nucl. Instrum. Methods B 131, 97 (1997), and references therein.CrossRefGoogle Scholar
15.Superconductivity, edited by Parks, R. D. (Marcel Dekker, Inc., New York, 1969), Vol. 1, p. 174.Google Scholar
16.International Critical Table, edited by the National Research Council of the USA (McGraw-Hill Book Company, Inc., New York, 1929), Vol. VI, p. 124.Google Scholar
17.Ashcroft, N. and Mermin, N. D., Solid State Physics (Saunders College, Philadelphia, CBS Publishing Asia Ltd., 1976), p. 52.Google Scholar