Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-04T13:20:00.108Z Has data issue: false hasContentIssue false

Fabrication and structural analysis of ZnO coated fiber optic phase modulators

Published online by Cambridge University Press:  31 January 2011

G. R. Fox
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Céramique, Lausanne, Switzerland, CH-1015
N. Setter
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Céramique, Lausanne, Switzerland, CH-1015
H. G. Limberger
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Laboratoire d'Optique Appliquée, Lausanne, Switzerland, CH-1015
Get access

Abstract

Fiber optic modulators were fabricated by coating optical fibers with electrode and piezoelectric ZnO layers. The techniques of piezoelectric fiber optic modulator (PFOM) fabrication are presented, and the microstructure and crystallographic texture of the coatings are analyzed. In order to produce thick (approximately 5 μm) ZnO coatings, it was necessary to study the reactive dc magnetron sputtering process in O2/Ar gas mixtures under conditions close to the transition between an oxidized and nonoxidized Zn target surface. In situ quartz crystal microbalance measurements of the deposition rate revealed thee distinct regions in the deposition rate (R) vs oxygen partial pressure behavior, at constant total pressure, for sputtering under conditions that provided an oxidized Zn target surface. Additionally, a transition between oxygen and argon dominated sputtering as observed by varying the sputtering pressure while maintaining a constant The transition between oxygen and argon dominated sputtering influences R to varying extents within the three R vs regions for an oxidized target surface. Correlations among the cathode current and voltage, deposition rate, and gas flow rate are presented to give a better understanding of the reactive sputtering processes occurring at the oxidized Zn target surface. Sputtering conditions optimized for a high ZnO deposition rate were used to produce 〈001〉 radially oriented ZnO fiber coatings for PFOM devices that can produce optical phase shifts as large as 0.38 rad/V.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Donalds, L. J., French, W. G., Mitchell, W. C., Swinehard, R. M., and Wei, T., Electron Lett. 18, 327 (1982).CrossRefGoogle Scholar
2.Jarzynski, J., J. Appl. Phys. 55 (9), 3243 (1984).CrossRefGoogle Scholar
3.Taylor, H. F., IEEE J. Lightwave Technol. LT–5 (7), 990 (1987).CrossRefGoogle Scholar
4.Imai, M., Yano, T., Motoi, K., and Odajima, A., IEEE J. Quantum Electron. 28 (9), 1901 (1992).CrossRefGoogle Scholar
5.Mermelstein, M. D., Appl. Opt. 22 (7), 1006 (1983).CrossRefGoogle Scholar
6.Imai, M., Tanizawa, H., Ohtsuka, Y., Takase, Y., and Odajima, A., J. Appl. Phys. 60 (6), 1916 (1986).CrossRefGoogle Scholar
7.Wilson, M. L., U.S. patent number 4,929,050 (1990).Google Scholar
8.Odajima, A. and Imai, M., Ferroelectrics 92, 41 (1989).CrossRefGoogle Scholar
9.Imai, M., Yano, T., Ohtsuka, Y., Motoi, K., and Odajima, A., IEEE Photon. Technol. Lett. 2 (10), 727 (1990).CrossRefGoogle Scholar
10.Heffner, B. L. and Khuri-Yakub, B. T., Appl. Phys. Lett. 48 (21), 1422 (1986).CrossRefGoogle Scholar
11.Heffner, B. L., Risk, W. P., Khuri-Yakub, B. T., and Kino, G. S., IEEE Ultrason. Symp. Proc, 709 (1986).Google Scholar
12.Godil, A. A., Patterson, D. B., Heffner, B. L., Kino, G. S., Khuri-Yakub, B. T., IEEE J. Lightwave Technol. 6 (10), 1586 (1988).CrossRefGoogle Scholar
13.Hickernell, F. S., Reese, G. M., Knuth, H. D., Emmons, T. P., Weller, J. F., and Czaplak, D.S., IEEE Ultrason. Symp. Proc. 715 (1986).Google Scholar
14.Czaplak, D. S., Weller, J. F., Goldberg, L., Hickernell, F. S., Knuth, H. D., and Young, S. R., IEEE Ultrason. Symp. Proc, 491 (1987).Google Scholar
15.Hickernell, F. S., IEEE Ultrason. Symp. Proc, 417 (1988).Google Scholar
16.Khuri-Yakub, B. T., Kino, G. S., and Galle, P., J. Appl. Phys. 46 (8), 3266 (1975).CrossRefGoogle Scholar
17.Maniv, S. and Zangvil, A., J. Appl. Phys. 49 (5), 2787 (1978).CrossRefGoogle Scholar
18.Petrov, I. and Orlinov, V., Thin Solid Films 120, 55 (1984).CrossRefGoogle Scholar
19.Krupanidhi, S.B. and Sayer, M., J. Appl. Phys. 56 (11), 3308 (1984).CrossRefGoogle Scholar
20.Tsuji, N., Komiyama, H., and Tanaka, K., Jpn. J. Appl. Phys. 29 (5), 835 (1990).CrossRefGoogle Scholar
21.Maniv, S., Westwood, W. D., and Colombini, E., J. Vac. Sci. Technol. 20 (2), 162 (1982).CrossRefGoogle Scholar
22.Hrbek, J., Thin Solid Films 42, 185 (1977).CrossRefGoogle Scholar
23.Roth, J., in Sputtering by Particle Bombardment II, edited by Behrisch, R. (Springer-Verlag, New York, 1983), pp. 91146.CrossRefGoogle Scholar
24.Westwood, W. D., Physics of Thin Films, edited by Fran-combe, M. H. and Vossen, J. L. (Academic Press, Inc., San Diego, CA, 1989), Vol. 14, pp. 173.Google Scholar
25. Fiber type FSN-10/125/250, and FS(Ti)-10/125/250, Cabloptic SA, Cortaillod, Switzerland.Google Scholar
26. Dichloromethane, 99.9% HPLC grade, Aldrich Chemie GmbH / Co. KG, Steinheim, Germany.Google Scholar
27. Acetone, 99.91% HPLC grade, Aldrich Chemie GmbH / Co. KG, Steinheim, Germany.Google Scholar
28. 2-propanol, 99.5% HPLC grade, Aldrich Chemie GmbH / Co. KG, Steinheim, Germany.Google Scholar
29. Scotch Magic, 810, adhesive tape, 3M, USA.Google Scholar
30.Ohring, M., The Materials Science of Thin Films (Academic Press, Inc., Boston, MA, 1992), p. 445.Google Scholar
31. Cement Universal, Merz and Benteli SA, Niederwangen, Switzerland.Google Scholar
32. 306 Evaporator, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
33. FTM5 digital film thickness monitor, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
34. Chrome Plate Tungsten Rods, CRW1, R.D. Mathis Company, Longbeach, CA.Google Scholar
35. Au wire, 0.05 mm diameter, 99.99% pure, Metalor SA, Switzerland.Google Scholar
36. Mo boat, ME9-.005MO, R.D. Mathis Company, Longbeach, CA.Google Scholar
37. Zn target 99.99% pure, CERAC Incorporated, Milwaukee, WI.Google Scholar
38. Diffusion pump, diffstak 160/700C, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
39. Rotary vacuum pump, E2M28, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
40. VAT gate valve, series 64, and adaptive pressure controller PM-5, VAT aktiengesellschaft für Vakuum-Apparate-Technik, Haag, Switzerland.Google Scholar
41. Mass flow controller, type 825, and multi-channel flow controller, model 1605, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
42. 120A Baratron, MKS Instruments, Inc., Andover, MA.Google Scholar
43. Magnetron sputtering source, 4 inch diameter, Edwards High Vacuum International, West Sussex, U.K.Google Scholar
44. dc power supply, MD-1X, Advanced Energy Industries GmbH, Filderstadt, Germany.Google Scholar
45. STM 100/MF Thickness Monitor/Rate Monitor, Sycon Instruments, East Syracuse, NY.Google Scholar
46. Alpha-Step 200, Tencor Instruments, Mountain View, CA.Google Scholar
47. [100] oriented, n-doped, Si wafers, CSEM, Neuchâtel, Switzerland.Google Scholar
48. Debye–Scherrer camera, Huber, Rimsting, Germany.Google Scholar
49. Kodak diagnostic film, SB-392, Eastman Kodak Company, Rochester, NY.Google Scholar
50. Densitometer, Carl Zeiss, Germany.Google Scholar
51. Scanning Electron Microscope, S360, Cambridge Instruments, England.Google Scholar
52. Scanning Electron Microscope, JEOL 6300 F, JEOL Ltd., Japan.Google Scholar
53. EPOFIX Resin, Struers, Copenhagen, Denmark.Google Scholar
54.Khan, I. H., in Handbook of Thin Film Technology, edited by Maissel, L. I. and Glang, R. (McGraw-Hill, Inc., New York, 1970), pp. 10.1–10.65.Google Scholar
55.Kadlec, S., Musil, J., and Vyskocil, J., Vacuum 37 (10), 729 (1987).CrossRefGoogle Scholar
56.Larsson, T., Blom, H-O., Nender, C., and Berg, S., J. Vac. Sci. Technol. A 6 (3), 1832 (1988).CrossRefGoogle Scholar
57.Plog, C., Wiedmann, L., and Benninghoven, A., Surf. Sci. 67, 565 (1979).CrossRefGoogle Scholar
58.Wittmaack, K., Surf. Sci. 89, 668 (1979).CrossRefGoogle Scholar
59.Roth, A, Vacuum Technology (North-Holland Publishing Company, New York, 1982), pp. 33–44.Google Scholar
60.Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), pp. 300303.Google Scholar
61.Fox, G. R., Muller, C.A.P., Setter, N., Ky, N.H., and Limberger, H.G., J. Vac. Sci. Technol. A 14 (3) (1996).CrossRefGoogle Scholar
62.Ky, N. H., Limberger, H. G., Salathé, R. P., and Fox, G. R., IEEE J. Lightwave Technol. 14 (1), 23 (1996).CrossRefGoogle Scholar
63.Ky, N. H., Limberger, H. G., Salathé, R. P., and Fox, G. R., IEEE Photon. Technol. Lett. 8 (5), 629 (1996).Google Scholar