Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T05:55:13.206Z Has data issue: false hasContentIssue false

Fabrication of silicon carbide nanoceramics

Published online by Cambridge University Press:  31 January 2011

Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba-shi, Ibaraki, 305, Japan
Young-Wook Kim
Affiliation:
Korea Institute of Science and Technology, Cheongryang Seoul, Korea
Hideki Hirotsuru
Affiliation:
Research Center, Denki Kagaku Kogyo Co., 3–5-1 Asahimachi, Machida, Tokyo, 194, Japan
Get access

Abstract

Ultrafine silicon carbide powder with an average particle size of 90 nm was densified by hot-processing with the addition of Al2O3, Y2O3, and CaO at 1750 °C. Silicon carbide nanoceramics with an average grain size of 110 nm were prepared by liquid phase sintering at low temperature. The materials showed superplastic deformation at a strain rate of 5.0 × 10-4/s at 1700 °C, which is the lowest temperature published. The microstructure and deformation behavior of materials from a submicrometer powder were also investigated as a reference.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hong, J. D., Hong, M. H., and Davis, P. F., Ceram. Int. 5, 155 (1979).CrossRefGoogle Scholar
2.Prochazka, S., in Special Ceramics, edited by Popper, P. (The British Ceramic Research Assoc., 1975), Vol. 6, p. 171.Google Scholar
3.Omori, M. and Takei, H., J. Am. Ceram. Soc. 65, C92 (1982).CrossRefGoogle Scholar
4.Mulla, M.A. and Kristic, V. D., Am. Ceram. Soc. Bull. 70, 439 (1991).Google Scholar
5.Padture, N. P., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
6.Lee, S. K., Kim, Y.C., and Kim, C. H., J. Mater. Sci. 29, 5321 (1994).CrossRefGoogle Scholar
7.Carter, C. H. Jr., Davis, R. F., and Bentley, J., J. Am. Ceram. Soc. 67, 732 (1984).CrossRefGoogle Scholar
8.Lane, J. E., Carter, C. H. Jr., and Davis, R. F., J. Am. Ceram. Soc. 71, 281 (1988).CrossRefGoogle Scholar
9.Nose, T., Fujii, T., and Kubo, H., in Superplasticity, edited by Kobayashi, M. and Wakai, F. (Mater. Res. Soc. Symp. Int. Proc. 7, Pittsburgh, PA, 1989), p. 293.Google Scholar
10.Ohji, T. and Yamauchi, Y., J. Am. Ceram. Soc. 77, 678 (1994).CrossRefGoogle Scholar
11.Carry, C. and Mocellin, A., in Materials Science Research, edited by Tressler, R. E. and Bradt, R. C. (Plenum Press, New York, 1984), Vol. 18, p. 391.Google Scholar
12.Duval-Riviere, M. L. and Vicens, J., Philos. Mag. A69, 451 (1994).CrossRefGoogle Scholar
13.Wang, J-G. and Raj, R., J. Am. Ceram. Soc. 67, 399 (1984).CrossRefGoogle Scholar
14.Chen, I-W. and Xue, L. A., J. Am. Ceram. Soc. 73, 2585 (1990).CrossRefGoogle Scholar
15.Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., and Niihara, K., Nature (London) 344, 421 (1990).CrossRefGoogle Scholar
16.Mitomo, M., Hirotsuru, H., Suematsu, H., and Nishimura, T., J. Am. Ceram. Soc. 78, 211 (1995).CrossRefGoogle Scholar
17.Kim, Y. W., Tanaka, H., Mitomo, M., and Otani, S., J. Ceram. Soc. Jpn. 103, 257 (1995).CrossRefGoogle Scholar
18.Kim, Y. W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 78, 3145 (1995).CrossRefGoogle Scholar