Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-14T18:20:34.575Z Has data issue: false hasContentIssue false

Fatigue Properties of Lanthanum Strontium Manganate–lead Zirconate Titanate Epitaxial Thin Film Heterostructures Produced by a Chemical Solution Deposition Method

Published online by Cambridge University Press:  31 January 2011

Frank McNally
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
Jin Hyeok Kim
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
F. F. Lange*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
*
c)Address all correspondence to this author.
Get access

Abstract

A liquid-precursor process was used to produce an epitaxial all-oxide ferroelectric memory device structure. The lanthanum strontium manganate–lead zirconate titanate–lanthanum strontium manganate (LSMO–PZT–LSMO) structure used for this device shows excellent polarization and fatigue behavior with a remnant polarization Pr of 42 µC/cm2 and a coercive field Ec of 68 keV. The polarization was found to only slightly degrade after over 1010 fatigue cycles. This behavior is contrasted with epitaxial PZT using a metal top electrode. In addition, the use of a top LSMO electrode was a sufficient barrier to Pb loss during heating to allow subsequent (or prolonged) heat treatments that would generally lead to Pb loss.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Auciello, O., Scott, J.F., and Ramesh, R., Phys. Today 51, 22 (1998).CrossRefGoogle Scholar
2.Desu, S.B., Phys. Status Solidi A 151, 467 (1995).CrossRefGoogle Scholar
3.Eom, C.B., Van Dover, R.B., Phillips, J.M., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
4.Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
5.Chung, B.W., Brosha, E.L., Garzon, F.H., Raistrick, I.D., Houlton, R.J., and Hawley, E., J. Mater. Res. 10, 2518 (1995).CrossRefGoogle Scholar
6.Cheung, J.T., Morgan, P., Lowndes, D.H., Zheng, X-Y., and Breen, J., Appl. Phys. Lett. 62, 2045 (1993).CrossRefGoogle Scholar
7.Tuttle, B.A. and Schwartz, R.W., MRS Bull. 21(6), 49 (1996).CrossRefGoogle Scholar
8.Polli, A.D., Lange, F.F., Ahlskog, M., Menon, R., and Cheetham, A.K., J. Mater. Res. 14, 1337 (1999).CrossRefGoogle Scholar
9.Manabe, T., Yamaguchi, I., Kondo, W., Mizuta, S., and Kumagi, T., J. Mater. Res. 12, 541 (1997).CrossRefGoogle Scholar
10.Wang, F. and Leppävuori, S., J. Appl. Phys. 83, 1293 (1997).CrossRefGoogle Scholar
11.Polli, A., formerly of the University of California, Santa Barbara, CA (personal communication).Google Scholar
12.Kim, J.H., Chien, A.T., Lange, F.F., and Wills, L., J. Mater. Res. 14, 1190 (1999).CrossRefGoogle Scholar
13.Seifert, A., Lange, F.F., and Speck, J., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
14.McNally, F., Doctoral Thesis, University of California at Santa Barbara (1999).Google Scholar
15.Tani, T. and Payne, D., J. Am. Ceram. Soc. 77, 1242 (1994).CrossRefGoogle Scholar
16.Du, X. and Chen, I-W., J. Appl. Phys. 83, 7789 (1998).CrossRefGoogle Scholar
17.Kwok, C.K., Vijay, D.P., Desu, S.B., Parikh, N.R., and Hill, E.A., Integr. Ferroelectr. 3, 121 (1993).CrossRefGoogle Scholar