Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T02:15:18.430Z Has data issue: false hasContentIssue false

The fcc to hcp transition induced by mechanical deformations in the Ni–Ru system

Published online by Cambridge University Press:  31 January 2011

A. Van Neste
Affiliation:
Département de Mines et Métallurgie, Université Laval, Québec, Québec G1K 7P4, Canada
A. Lamarre
Affiliation:
Département de Mines et Métallurgie, Université Laval, Québec, Québec G1K 7P4, Canada
M.L. Trudeau
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, Varennes, Québec J3X 1S1, Canada
R. Schulz
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, Varennes, Québec J3X 1S1, Canada
Get access

Abstract

The structural transition between the metastable fcc and hcp crystalline solid solutions in the Ni–Ru system has been studied as a function of composition using the mechanical alloying technique. At the transition point, the spacings between the close-packed planes of the metastable fcc and hcp phases are the same. No amorphization is observed at the interfaces. This mechanically induced phase transition has been studied by x-ray diffraction, transmission electron microscopy, and differential thermal analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koch, C. C., Cavin, O.B., McKamey, C. G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
2.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
3.Weeber, A.W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
4.Köster, U., Pries, R., Bewernick, G., Schuhmacher, B., and Blank-Bewersdorff, M., Coll. Phys. C4, 121 (1990).Google Scholar
5.Vasyunina, N. A., Barysheva, G. S., and Balandin, A. A., Izvestiya Akademii Nauk SSSR, Seriya Khiraicheskaya 4, 848 (1969).Google Scholar
6.de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in metal—transition metal alloys, edited by de Boer, F. R. and Pettifor, D. G. (Elsevier Science Publishing Company, Inc., Amsterdam, 1988); P. I. Loeff, A. W. Weeber, and A. R. Miedema, J. Less-Com. Met. 140, 299 (1988).Google Scholar
7.Eckert, J., Schultz, L., and Hellstern, E., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
8.Lamarre, A., “Fabrication d'alliages amorphes et nanocristallins de Ni–Mo par broyage méchanique à haute intensityé pour l'électrolyse de l'eau”, Master's Thesis, Laval University, Québec, Canada (1991).Google Scholar
9.Massalski, T. B., in Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (North Holland Publishing, Amsterdam, 1983), p. 178.Google Scholar
10.Atzmon, M., Unruh, K. M., and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
11.Hull, D., Introduction to Dislocation (Pergamon Press, New York, 1965).Google Scholar
12.Gallagher, P. C. J., Metall. Trans. 1, 2429 (1970).CrossRefGoogle Scholar
13.Köster, U., Metallurgia, Odlewnictwo Tom 6 Zeszyt-1 (1980), pp. 5360.Google Scholar
14.Barrett, C. S., AIME Trans. 188, 123 (1950).Google Scholar