Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T20:24:34.103Z Has data issue: false hasContentIssue false

Finite element analysis modeling of high voltage and frequency 3-phase solid state transformers enabled by metal amorphous nanocomposites

Published online by Cambridge University Press:  11 May 2018

Mst Nazmunnahar*
Affiliation:
Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Satoru Simizu
Affiliation:
Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Paul R. Ohodnicki
Affiliation:
National Energy Technology Lab (NETL) and Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15236, USA
Subhashis Bhattacharya
Affiliation:
Electrical Engineering Department, North Carolina University, Raleigh, North Carolina 27606, USA
Michael E. McHenry
Affiliation:
Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
*
a)Address all correspondence to this author. e-mail: mnazmunn@andrew.cmu.edu
Get access

Abstract

We review the materials paradigm for metal amorphous nanocomposite (MANC) soft magnetic materials to showcase in solid state transformers (SSTs). We report 2D finite element analysis (FEA) of 3-phase SSTs operating at 50 Hz–10 kHz frequencies. We benchmark materials in designs to control high frequency losses and achieve higher power densities. FEA models are solved in the time domain for line frequencies of 50 Hz–10 kHz and 100 KW output power for the first 4 cycles. Transformer topologies are coupled to a power analysis using a Steinmetz parameterization of magnetic losses capturing induction and field scaling for transformer grade Si steel as compared to Metglas, Ferrite, FINEMET, Co- and FeNi-based MANCs. Recently discovered FeNi-based MANCs allow smaller transformers at equivalent power as compared to Si steel, Metglas, and Co-based MANCs. Fe-rich and non-Co containing MANCs also offer economies based on lower raw materials costs compared with Co-based MANCs.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McMurray, W.: Power converter circuits having a high frequency link. U.S. Patent No. 3517300, June 23, 1970.Google Scholar
Bhattacharya, S.: Transforming the transformer. IEEE Spectrum 54, 3843 (2017).CrossRefGoogle Scholar
Mainali, K., Tripathi, A., Madhusoodhanan, S., Kadavelugu, A., Patel, D., Hazra, S., Hatua, K., and Bhattacharya, S.: A transformerless intelligent power substation: A three-phase SST enabled by a 15-kV SiC IGBT. IEEE Power Electron. Mag. 2, 3143 (2015).CrossRefGoogle Scholar
Madhusoodhanan, S., Tripathi, A., Patel, D., Mainali, K., Kadavelugu, A., Hazra, S., Bhattacharya, S., and Hatua, K.: Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 51, 33433360 (2015).CrossRefGoogle Scholar
Huang, A.Q., Zhu, G., Wang, L., and Zhang, L.: 15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers. CPSS Trans. Power Electron. Appl. 2, 118130 (2017).CrossRefGoogle Scholar
Huang, A.Q.: Medium-voltage solid state transformer technology for a smarter and resilient grid. IEEE Ind. Electron. Mag. 10, 2942 (2016).CrossRefGoogle Scholar
Huang, A.Q., Crow, M.L., Heydt, G.T., Zheng, J.P., and Dale, S.J.: The future renewable electric energy delivery and management (FREEDM) system. The energy internet. Proc. IEEE 99, 133148 (2011).CrossRefGoogle Scholar
She, X., Huang, A.Q., and Burgos, R.: Review of solid-state-transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1, 186198 (2013).CrossRefGoogle Scholar
Huber, J.E. and Kolar, J.W.: Solid-state transformers on the origins and evolution of key concepts. IEEE Ind. Electron. Mag. 10, 1928 (2016).CrossRefGoogle Scholar
Mclyman, W.M.T.: Transformer and Inductor Design Handbook, 3rd ed. (CRC Press, Boca Raton, Fl, 2004).CrossRefGoogle Scholar
Ferch, M.: Nanocrystalline core materials for modern power electronic designs [Internet]. MAGNETEC GmbH, Langenselbold, Germany, 2003. Available at: http://www.magnetec.de/fileadmin/pdf/np_powerelectronic_e.pdf.Google Scholar
McHenry, M.E. and Laughlin, D.E.: Magnetic properties of metals and alloys. Physical Metallurgy, 5th ed, edited by Laughlin, D.E. and Hono, K. (Elsevier B.V., New York, New York, 2015).Google Scholar
Leary, A., Keylin, V., Devaraj, A., DeGeorge, V., Ohodnicki, P., and McHenry, M.E.: Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications. J. Mater. Res. 23, 1 (2016).Google Scholar
Kernion, S.J., Miller, K.J., Shen, S., Keylin, V., Huth, J., and McHenry, M.E.: High induction, low loss FeCo-based nanocomposite alloys with reduced metalloid content. IEEE Trans. Magn. 47, 3452 (2011).CrossRefGoogle Scholar
Daniil, M., Ohodnicki, P.R., McHenry, M.E., and Willard, M.A.: Shear band formation and fracture behavior of nanocrystalline (Co, Fe)-based alloys. Philos. Mag. 90, 15471565 (2010).Google Scholar
Ohodnicki, P.R., Long, J., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co, Fe)89Zr7B4 and (Co, Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).Google Scholar
Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772781 (2012).Google Scholar
Aronhime, N., DeGeorge, V., Keylin, V., Ohodnicki, P., and McHenry, M.E.: The effects of strain-annealing on tuning permeability and lowering losses in Fe–Ni based metal amorphous nanocomposites. J. Mater. 69, 11 (2017).Google Scholar
DeGeorge, V., Zhoglin, E., Keylin, V., and McHenry, M.E.: Time temperature transformation (TTT) diagram for secondary crystal products of Co-based Co–Fe–B–Si–Nb–Mn soft magnetic nanocomposite. J. Appl. Phys. 117, 17A329 (2015).CrossRefGoogle Scholar
Aronhime, N., Zhoglin, E., Keylin, V., Jin, X., Ohodnicki, P., and McHenry, M.E.: Magnetic properties and crystallization kinetics of (Fe100−xNix)80Nb4Si2B14 metal amorphous nanocomposites. Scripta Mater. 120C, 133137 (2017).Google Scholar
McHenry, M.E., Johnson, F., Okumura, H., Ohkubo, T., Hsiao, A., Ramanan, V.R.V., and Laughlin, D.E.: The kinetics of nanocrystallization and implications for properties in FINEMET, NANOPERM, and HITPERM nanocomposite magnetic materials. Scripta Mater. 48, 881887 (2003).CrossRefGoogle Scholar
Johnson, W.A. and Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416442 (1939).Google Scholar
Avrami, M.J.: Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
Avrami, M.J.: Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
Avrami, M.J.: Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
Kolmogorov, A.N.: Statistical theory of nucleation processes. Bull. Acad. Sci. USSR, Phys. Ser. 3, 355 (1937).Google Scholar
Ayers, J.D., Harris, V.G., Sprague, J.A., Elam, W.T., and Jones, H.N.: On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9. Acta Mater. 46, 1861 (1998).CrossRefGoogle Scholar
Ramanan, V.R.V. and Fish, G.E.: Crystallization kinetics in Fe–B–Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).CrossRefGoogle Scholar
Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., and Widom, M.: Application of classical nucleation theory to phase selection and composition of nucleated nanocrystals during crystallization of Co-rich (Co,Fe)-based amorphous precursors. Acta Mater. 58, 48044813 (2010).CrossRefGoogle Scholar
Leary, A.M., Lucas, M.S., Ohodnicki, P.R., Kernion, S.J., and McHenry, M.E.: The influence of pressure on the phase stability of nanocomposite Fe89Zr7B4 during heating from energy dispersive X-ray diffraction. J. Appl. Phys. 113, 17A317 (2013).CrossRefGoogle Scholar
DeGeorge, V., Deveraj, A., Keylin, V., Cui, J., and McHenry, M.E.: Mass balance and atom probe tomography (APT) characterization of soft magnetic (Fe65Co35)79.5B13Si2Nb4Cu1.5 nanocomposites. IEEE Trans. Magn. 51, 2001704 (2014).Google Scholar
DeGeorge, V., Shen, S., Ohodnicki, P., Andio, M., and McHenry, M.E.: Multiphase resistivity model for magnetic nanocomposites developed for high frequency high power transformation. J. Electron. Mater. 43, 96108 (2014).CrossRefGoogle Scholar
Shen, S., Kernion, S.J., Ohodnicki, P.R., and McHenry, M.E.: Two-current model of the composition dependence of resistivity in amorphous (Fe100−xCox)89−yZr7B4Cuy alloys using a rigid-band assumption. J. Appl. Phys. 112, 103705103709 (2012).CrossRefGoogle Scholar
Cougo, B. and Kolar, J.W.: Integration of leakage inductance in tape wound core transformers for dual active bridge converters. In Proceeding of the International Conference of Integrated Power Electronics Systems (CIPS 2012) (IEEE, Nuremberg, Germany, March 6–8, 2012).Google Scholar
Beddingfield, R., Bhattacharya, S., and Ohodnicki, P.: Physics of leakage flux induced eddy currents in power magnetics components, presented in 62nd annual conference. In Magnetism and Manetic Materials (AIP Advances, Pittsburgh, Pennsylvania, November 6–10, 2017).Google Scholar
Wojda, R.P. and Kazimierczuk, M.K.: Analytical optimization of solid-round-wire windings. IEEE Trans. Ind. Electron. 60, 10331041 (2013).CrossRefGoogle Scholar
Maswood, A.I. and Song, L.K.: Design aspects of planar and conventional smps transformer: A cost benefit analysis. Industrial electronics. IEEE Trans. Ind. Electron. 50, 571577 (2003).CrossRefGoogle Scholar
Nysveen, A. and Hernes, M.: Minimum loss design of a 100 kHz inductor with foil windings. In Power Electronics and Applications, 1993, Fifth European Conference, Vol. 3 (IEEE, Brighton, Untied Kingdom, 1993); pp. 106111.Google Scholar
Schutz, J., Roudet, J., and Schellmanns, A.: Modeling litz wire windings. In Indus-Try Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS ’97. Conference Record of the 1997 IEEE, Vol. 2 (New Orleans, Louisiana, 1997); pp. 11901195.CrossRefGoogle Scholar
Tuckey, A.M. and Patterson, D.J.: A minimum loss inductor design for an actively clamped resonant DC link inverter. In Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, Vol. 5 (IEEE, Piscataway, New Jersey, 2000); pp. 31193126.Google Scholar
Mohan, N. and Undeland, T.M.: Power Electronics: Converters, Applications, and Design (Wiley, New Delhi, India, 2007).Google Scholar
Hurley, W.G., Wolfle, W.H., and Breslin, J.G.: Optimized transformer design: Inclusive of high-frequency effects. IEEE Trans. Power Electron. 13, 651659 (1998).CrossRefGoogle Scholar
Petkov, R.: Optimum design of a high-power, high-frequency transformer. IEEE Trans. Power Electron. 11, 3342 (1996).CrossRefGoogle Scholar
Sullivan, C.R.: Optimal choice for number of strands in a litz-wire transformer winding. In Power Electronics Specialists Conference, 1997. PESC’97 Record., 28th Annual IEEE, Vol. 1 (IEEE, New York, New York, 1997); pp. 2835.Google Scholar
Sullivan, C.R.: Cost-constrained selection of strand diameter and number in a litz-wire transformer winding. IEEE Trans. Power Electron. 16, 281288 (2001).CrossRefGoogle Scholar
Kheraluwala, M.H., Novotny, D.W., and Divan, D.M.: Design considerations for high power high frequency transformers. In Power Electronics Specialists Conference, 1990. PESC ’90 Record., 21st Annual IEEE (IEEE, San Antonio, Texas, 1990); pp. 734742.Google Scholar
Bertotti, G.: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621630 (1988).CrossRefGoogle Scholar
Krings, A.: Iron losses in electrical machines-influence of material properties, manufacturing processes, and inverter operation. Ph.D. thesis, KTH Royal Institute of Technology, 2014. Available at: http://www.diva-portal.org/smash/record.jsf?pid=diva2:717326 (accessed June 23, 2015).Google Scholar
Spornic, S.A.: Automatisation de bancs de caractérisation 2D des tôles magnétiques, Influence des formes d’onde sur les mécanismes d’aimantation. Ph.D. thesis, Ecole Nationale Supérieure d’Ingénieurs Electriciens de Grenoble, 1998. Available at: https://tel.archives-ouvertes.fr/tel-00824201 (accessed June, 23, 2015).Google Scholar
Steinmetz, C.P.: On the law of hysteresis. Trans. Am. Inst. Electr. Eng. 3, 3 (1892).Google Scholar
Islam, R., Guo, Y., and Zhu, J.: Power Converters for Medium Voltage Networks (Springer, Berlin/Heidelberg, Germany, 2014).CrossRefGoogle Scholar
Silveyra, J.M., Leary, A.M., DeGeorge, V., Simizu, S., and McHenry, M.E.: High speed electric motorsbased on high performance novel soft magnets. J. Appl. Phys. 115, 17A319 (2014).CrossRefGoogle Scholar
Silveyra, J.M., Xu, P., Keylin, V., DeGeorge, V., and Leary, A.: Amorphous and nanocomposite materials for energy-efficient electric motors. J. Electron. Mater. 45, 219225 (2016).CrossRefGoogle Scholar
Eggert, R., Wadia, C., Anderson, C., Bauer, D., Fields, F., Meinert, L., and Taylor, P.: Rare Earths: Market Disruption, Innovation, and Global Supply Chains. Annu. Rev. Env. Resour. 41, 199222 (2016).Google Scholar
Kurniawan, M., Keylin, V., and McHenry, M.E.: Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys. J. Mater. Res. 30, 22312237 (2015).CrossRefGoogle Scholar
Iwanabe, H., McHenry, M.E., Lu, B., and Laughlin, D.E.: Thermal stability of the nanocrystalline Fe–Co–Hf–B–Cu alloy. J. Appl. Phys. 85, 44244426 (1999).CrossRefGoogle Scholar
Willard, M.A., Laughlin, D.E., and McHenry, M.E.: Recent advances in the development of (Fe,Co)88M7B4Cu1 magnets. J. Appl. Phys. 87, 70917096 (2000).CrossRefGoogle Scholar
Miller, K.J., Wise, A., Leary, A., Laughlin, D.E., Keylin, V., Huth, J., and McHenry, M.E.: Increased induction in nanocomposite materials with reduced glass-formers. J. Appl. Phys. 107, 09A31609A318 (2010).CrossRefGoogle Scholar
Kernion, S.J., Miller, K.J., Shen, S., Keylin, V., Huth, J., and McHenry, M.E.: High induction low loss FeCo-based nanocomposite alloys with reduced metalloid content. IEEE Trans. Magn. 47, 34523455 (2011).CrossRefGoogle Scholar
Long, J., Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., Ohkubo, T., and Hono, K.: Structural studies of secondary crystallization products of the Fe23B6-type in a nanocrystalline FeCoB-based alloy. J. Appl. Phys. 101, 09N11409N116 (2007).CrossRefGoogle Scholar
Ohodnicki, P.R., Cates, N.C., Laughlin, D.E., McHenry, M.E., and Widom, M.: Ab initio theoretical study of magnetization and phase stability of the (Fe,Co,Ni)23B6 and (Fe,Co,Ni)23Zr6 structures of Crr23C6 and Mn23Th6 prototypes. Phys. Rev. B 78, 144414144427 (2008).CrossRefGoogle Scholar