Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:36:54.608Z Has data issue: false hasContentIssue false

Flowerlike submicrometer gold particles: Size- and surface roughness-controlled synthesis and electrochemical characterization

Published online by Cambridge University Press:  31 January 2011

Changsheng Shan
Affiliation:
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, and Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
Dongxue Han*
Affiliation:
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, and Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China; and Laboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, FI-20500, Finland
Jiangfeng Song
Affiliation:
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, and Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
Ari Ivaska
Affiliation:
Laboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, FI-20500, Finland
Li Niu
Affiliation:
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, and Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China; and Laboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, FI-20500, Finland
*
a)Address all correspondence to this author. e-mail: dxhan@ciac.jl.cn
Get access

Abstract

Flowerlike submicrometer gold particles were synthesized through a simple one-step method using p-diaminobenzene as a reductant in the presence of poly(sodium 4-styrenesulfonate) in aqueous solution. The particle size with diameters ranging from 267 to 725 nm could be tuned by varying the molar ratio of poly(sodium 4-styrenesulfonate) to HAuCl4, which also resulted in tunable roughness. The gold particles were confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Cyclic voltammetry showed that the specific surface area of the flowerlike particles was larger than that of sphere particles. The obtained flowerlike particles with higher surface area also exhibited higher electrocatalytic activity toward H2O2 and O2. The increase of electrocatalytic activity could be attributed to the increase of the active surface area.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
2.Murphy, C.J., San, T.K., Gole, A.M., Orendorff, C.J., Gao, J.X., Gou, L., Hunyadi, S.E., Li, T.Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857 (2005)CrossRefGoogle ScholarPubMed
3.Cao, Y.W.C., Jin, R.C., Mirkin, C.A.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536 (2002)CrossRefGoogle ScholarPubMed
4.Daniel, M.C., Astruc, D.Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
5.Yang, J.H., Qi, L.M., Lu, C.H., Ma, J.M., Cheng, H.M.Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angew. Chem. Int. Ed. 44, 598 (2005)CrossRefGoogle ScholarPubMed
6.Katz, E., Willner, I.Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042 (2004)CrossRefGoogle ScholarPubMed
7.Frens, G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. (Lond.) 241, 20 (1973)CrossRefGoogle Scholar
8.Zhao, M.Q., Sun, L., Crooks, R.M.Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877 (1998)CrossRefGoogle Scholar
9.Teranishi, T., Hosoe, M., Tanaka, T., Miyake, M.Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 103, 3818 (1999)CrossRefGoogle Scholar
10.Sun, Y.G., Xia, Y.N.Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)CrossRefGoogle ScholarPubMed
11.Sau, T.K., Murphy, C.J.Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648 (2004)CrossRefGoogle ScholarPubMed
12.Jana, N.R., Gearheart, L., Murphy, C.J.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. (Camb.) 617 (2001)CrossRefGoogle Scholar
13.Busbee, B.D., Obare, S.O., Murphy, C.J.An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 15, 414 (2003)CrossRefGoogle Scholar
14.Kim, J.U., Cha, S.H., Shin, K., Jho, J.Y., Lee, J.C.Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater. 16, 459 (2004)CrossRefGoogle Scholar
15.Li, X.D., Hao, H.S., Murphy, C.J., Caswell, K.K.Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003)CrossRefGoogle Scholar
16.Zhang, J.L., Du, J.M., Han, B.X., Liu, Z.M., Jiang, T., Zhang, Z.F.Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116 (2006)CrossRefGoogle ScholarPubMed
17.Ah, C.S., Yun, Y.J., Park, H.J., Kim, W.J., Ha, D.H., Yun, W.S.Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 17, 5558 (2005)CrossRefGoogle Scholar
18.Liu, B., Xie, J., Lee, J.Y., Ting, Y.P., Chen, J.P.Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109, 15256 (2005)CrossRefGoogle ScholarPubMed
19.Yamamoto, M., Kashiwagi, Y., Sakata, T., Mori, H., Nakamoto, M.Synthesis and morphology of star-shaped gold nanoplates protected by poly(N-vinyl-2-pyrrolidone). Chem. Mater. 17, 5391 (2005)CrossRefGoogle Scholar
20.Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M.Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482 (2004)CrossRefGoogle ScholarPubMed
21.Tian, N., Zhou, Z.Y., Sun, S.G., Ding, Y., Wang, Z.L.Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732 (2007)CrossRefGoogle ScholarPubMed
22.Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801 (1994)CrossRefGoogle Scholar
23.Jana, N.R., Gearheart, L., Murphy, C.J.Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389 (2001)3.0.CO;2-F>CrossRefGoogle Scholar
24.Nikoobakht, B., El-Sayed, M.A.Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957 (2003)CrossRefGoogle Scholar
25.Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., ElSayed, M.A.Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996)CrossRefGoogle ScholarPubMed
26.Porel, S., Singh, S., Radhakrishnan, T.P.Polygonal gold nanoplates in a polymer matrix. Chem. Commun. (Camb.) 2387 (2005)CrossRefGoogle Scholar
27.Sun, X., Dong, S., Wang, E.One-step preparation of highly concentrated well-stable gold colloids by direct mix of polyelectrolyte and HAuCl4 aqueous solutions at room temperature. J. Colloid Interface Sci. 288, 301 (2005)CrossRefGoogle ScholarPubMed
28.Crooks, R.M., Zhao, M.Q., Sun, L., Chechik, V., Yeung, L.K.Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181 (2001)CrossRefGoogle Scholar
29.Murphy, C.J., Jana, N.R.Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80 (2002)3.0.CO;2-#>CrossRefGoogle Scholar
30.Li, Z.H., Ravaine, V., Ravaine, S., Garrigue, P., Kuhn, A.Raspberry-like gold microspheres: Preparation and electrochemical characterization. Adv. Funct. Mater. 17, 618 (2007)CrossRefGoogle Scholar
31.Guo, S., Wang, L., Wang, E.Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface. Chem. Commun. (Camb.) 3163 (2007)CrossRefGoogle ScholarPubMed
32.He, X., Antonelli, D.Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew. Chem. Int. Ed. 41, 214 (2001)3.0.CO;2-D>CrossRefGoogle Scholar
33.Szamocki, R., Reculusa, S., Ravaine, S., Bartlett, P.N., Kuhn, A., Hempelmann, R.Tailored mesostructuring and biofunctionalization of gold for increased electroactivity. Angew. Chem. Int. Ed. 45, 1317 (2006)CrossRefGoogle ScholarPubMed
34.Szamocki, R., Velichko, A., Muecklich, F., Reculusa, S., Ravaine, S., Neugebauer, S., Schuhmann, W., Hempelmann, R., Kuhn, A.Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem. Commun. 9, 2121 (2007)CrossRefGoogle Scholar
35.Jaramillo, T.F., Baeck, S-H., Cuenya, B.R., McFarland, E.W.Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148 (2003)CrossRefGoogle ScholarPubMed
36.Dai, X.A., Compton, R.G.Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Anal. Sci. 22, 567 (2006)CrossRefGoogle Scholar
37.Soreta, T.R., Strutwolf, J., O'sullivan, C.K.Electrochemical fabrication of nanostructured surfaces for enhanced response. ChemPhysChem 9, 920 (2008)CrossRefGoogle Scholar
38.Trasatti, S., Petrii, O.A.Real surface-area measurements in electrochemistry. Pure Appl. Chem. 63, 711 (1991)CrossRefGoogle Scholar
39.Shin, C., Shin, W., Hong, H.G.Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor. Electrochim. Acta 53, 720 (2007)CrossRefGoogle Scholar