Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-20T10:17:15.921Z Has data issue: false hasContentIssue false

Grain Size Dependence of Mechanical Properties in Nanocrystalline Selenium

Published online by Cambridge University Press:  31 January 2011

K. Lu
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
H. Y. Zhang
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Y. Zhong
Affiliation:
Technical University of Berlin, Institute for Metals Research, Hardenbergstr. 36, D-10623 Berlin, Germany
H. J. Fecht
Affiliation:
Technical University of Berlin, Institute for Metals Research, Hardenbergstr. 36, D-10623 Berlin, Germany
Get access

Abstract

Porosity-free nanocrystalline element selenium (nc-Se) samples with the mean grain sizes ranging from 8 to 70 nm were synthesized by complete crystallization of the melt-quenched amorphous Se solid. Mechanical properties including microhardness (Hv) and elastic modulus (E) of the nc-Se samples were measured by means of nanoindentation tests and microhardness tests, respectively. With a reduction of grain size, the nc-Se samples were found to be substantially hardened. But the grain size dependence of Hv does not follow a simple Hall–Petch relation over the whole grain size range, exhibiting three distinct stages corresponding to three different Hall–Petch slopes. The maximum Hall–Petch slope was found to be in the grain size range of 15–20 nm, corresponding to large values of the elastic modulus. This behavior can be explained in terms of the lattice distortion in the nc-Se samples that was experimentally determined by using quantitative x-ray diffraction measurements. A conclusion is drawn that the lattice structure of the nm-sized crystallites may play an important role in mechanical properties of nanocrystalline materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Siegel, R. W., in Physics of New Materials, edited by Fujita, F. E. (Springer Series in Materials Sciences, Springer-Verlag, Berlin, 1994), Vol. 27, p. 65.Google Scholar
3.Hall, E. O., Proc. Phys. Soc. London B 64, 747 (1951); N. J. Petch, J. Iron Steel Inst. 174, 25 (1953).CrossRefGoogle Scholar
4.Siegel, R. W. and Fougere, G. E., in Nanophase Materials, edited by Hadjipanayis, G. C. and Siegel, R. W. (Kluwer Academic Publ., The Netherlands, 1994), p. 233.Google Scholar
5.Suryanarayana, C., Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
6.Lu, K. and Sui, M. L., Scripta Metall. Mater. 28, 1465 (1993).CrossRefGoogle Scholar
7.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. Mater. 23, 1679 (1989).Google Scholar
8.Jang, J. S. C. and Koch, C. C., Scripta Metall. Mater. 24, 1599 (1990).Google Scholar
9.Lu, K., Wang, J. T., and Wei, W. D., Scripta Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
10.Liu, X. D., Wang, J. T., and Ding, B. Z., Scripta Metall. Mater. 28, 59 (1993).Google Scholar
11.McMahon, G. and Erb, U., Microstructured Sci. 17, 447 (1989).Google Scholar
12.Nieh, T. G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).Google Scholar
13.Suryanarayana, C., Mukhopadhyay, D., Patankar, S. N., and Froes, F. H., J. Mater. Res. 7, 2114 (1992).CrossRefGoogle Scholar
14.Li, S., Sun, L., and Wang, Z. G., Nanostructured Mater. 2, 953 (1993).Google Scholar
15.Wang, N., Wang, Z., Aust, K. T., and Erb, U., Acta Metall. Mater. 43, 519 (1995).Google Scholar
16.Gleiter, H., Nanostructured Mater. 6, 3 (1995).Google Scholar
17.Fougere, G. E., Weertman, J. R., and Siegel, R. W., Scripta Metall. Mater. 26, 1879 (1992).CrossRefGoogle Scholar
18.Lu, K., Wang, J. T., and Wei, W. D., J. Appl. Phys. 69, 522 (1991).Google Scholar
19.Sui, M. L., Lu, K., Deng, W., Xiong, L. Y., Patu, S., and He, Y. Z., Phys. Rev. B 44, 6466 (1991).Google Scholar
20.Lu, K., Mater. Sci. Eng. Rep. R16, 161 (1996).Google Scholar
21.Palumbo, G., Erb, U., and Aust, K. T., Scripta Metall. Mater. 24, 2347 (1990).Google Scholar
22.El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. Mater. 27, 1185 (1992).Google Scholar
23.Zhang, H. Y., Hu, Z. Q., and Lu, K., J. Appl. Phys. 77, 2811 (1995).CrossRefGoogle Scholar
24.Newey, D., Wilkins, M. A., and Pollock, H. M., J. Phys. E 15, 119 (1982).Google Scholar
25.Kehrel, A., Zhong, Y., Schumacher, G., and Wanderka, N., J. Nucl. Mater. 207, 153 (1993).Google Scholar
26.Metals Handbook, 10th ed., Vol. 2, Properties and Selection–Nonferrous Alloys and Special-Purpose Materials (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 1154.Google Scholar
27.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).Google Scholar
28.Siegel, R. W. and Fougere, G. E., Nanostructured Mater. 6, 205 (1995).Google Scholar
29.Armstrong, R. W., Acta Metall. 16, 347 (1968).Google Scholar
30.Lasalmonie, A. and Strudel, J. L., J. Mater. Sci. 21, 1837 (1986).CrossRefGoogle Scholar
31.Shen, T. D., Koch, C. C., Tsui, T. Y., and Pharr, G. M., J. Mater. Res. 10, 2892 (1995).Google Scholar
32.Krstic, V., Erb, U., and Palumbo, G., Scripta Metall. Mater. 29, 1501 (1993).Google Scholar
33.Lu, K. and Sui, M. L., J. Mater. Sci. Technol. 9, 419 (1993).Google Scholar