Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T03:25:21.303Z Has data issue: false hasContentIssue false

Hard transparent conducting hex-element complex oxide films by reactive sputtering

Published online by Cambridge University Press:  31 January 2011

Ta-Kun Chen
Affiliation:
Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan, Republic of China 974
Ming-Show Wong*
Affiliation:
Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan, Republic of China 974
*
a)Address all correspondence to this author. e-mail: mswong@mail.ndhu.edu.tw
Get access

Abstract

Hard transparent conducting oxide films of hex-element AlxCoCrCuFeNi were deposited by reactive direct current (dc) magnetron sputtering using homogeneous alloy targets. The composition–property relation was investigated by changing the aluminum molar ratio, x value, from 0.5 to 2. The films comprise only a cubic spinel phase without other accompanying crystalline oxide phases and exhibit a high hardness up to 22.2 GPa. A small, negative deviation from Vegard’s law was observed for the spinel phase, which indicated changes in cation distribution. The optical transmittance in both the visible and infrared region is increased with aluminum content, however, together with a loss of film conductivity. The Hall measurements reveal a p-type conducting behavior for the Al0.5CoCrCuFeNi oxide film with a conductivity of 40.1 Ω−1cm−1, a carrier density of 5.81 × 1018 cm−3, and a mobility as high as 43.2 cm2V−1s−1. Moreover, Hall measurements show metallic conduction behavior for the Al0.5CoCrCuFeNi oxide film and thermal activated semiconducting properties for the Al1CoCrCuFeNi and Al2CoCrCuFeNi oxide films. Combine the crystal field theory and the x-ray photoelectron spectroscopy (XPS) measurements, the decrease of film conductivity is explained by the decreases of available carriers and mobility due to the fact that increasing aluminum content reduces the number of conducting cations at octahedral sites and increases the activation energy for electrical conduction. XPS analyses also show lots of excess oxygen originated from anion-rich growth condition in the films deposited at high oxygen partial pressure that produce p-type carriers lowering the electrical resistivity. The amount of excess oxygen decreases with increasing Al content and also contributes to the variation of conductivity with x value.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bull. 25, 15 2000CrossRefGoogle Scholar
2Kawazoe, H., Yanagi, H., Ueda, K., Hosono, H.: Transparent p-type conducting oxides: Design and fabrication of p-n heterojunctions. MRS Bull. 25, 28 2000CrossRefGoogle Scholar
3Coutts, T.J., Young, D.L., Li, X.N.: Characterization of transparent conducting oxides. MRS Bull. 25, 58 2000CrossRefGoogle Scholar
4Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H.: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939 1997CrossRefGoogle Scholar
5Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 2004CrossRefGoogle ScholarPubMed
6DiSalvo, F.J.: Challenges and opportunities in solid-state chemistry. Pure Appl. Chem. 72, 1799 2000CrossRefGoogle Scholar
7Chen, T.K., Shun, T.T., Yeh, J.W., Wong, M.S.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–89, 193 2004CrossRefGoogle Scholar
8Chen, T.K., Wong, M.S., Shun, T.T., Yeh, J.W.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 200, 1361 2005CrossRefGoogle Scholar
9Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 2004CrossRefGoogle Scholar
10Chen, T.K., Wong, M.S.: Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films. Thin Solid Films 516, 141 2007CrossRefGoogle Scholar
11Tong, C.J., Chen, Y.L., Chen, S.K., Yeh, J.W., Shun, T.T., Tsau, C.H., Lin, S.J., Chang, S.Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 2005CrossRefGoogle Scholar
12Wu, J.M., Lin, S.J., Yeh, J.W., Chen, S.K., Huang, Y.S.: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 2006CrossRefGoogle Scholar
13Pankove, J.I.: Optical Processes in Semiconductors Dover Publications Inc. New York 1971Google Scholar
14Edwards, P.L.: Magnetic properties of the manganese chromite-aluminates. Phys. Rev. 116, 294 1959CrossRefGoogle Scholar
15Kulkarni, R.G., Trivedi, B.S., Joshi, H.H., Baldha, G.J.: Magnetic properties of copper ferrite aluminates. J. Magn. Magn. Mater. 159, 375 1996CrossRefGoogle Scholar
16Romeijn, F.C.: Physical and crystallographical properties of some spinels. Philips Res. Rep. 8, 304 1953Google Scholar
17Kohara, T., Tamagaki, H., Ikari, Y., Fujii, H.: Deposition of alpha-Al2O3 hard coatings by reactive magnetron sputtering. Surf. Coat. Technol. 185, 166 2004CrossRefGoogle Scholar
18Hones, P., Levy, F., Randall, N.X.: Influence of deposition parameters on mechanical properties of sputter-deposited Cr2O3 thin films. J. Mater. Res. 14, 3623 1999CrossRefGoogle Scholar
19Jirout, M., Musil, J.: Effect of addition of Cu into ZrOx film on its properties. Surf. Coat. Technol. 200, 6792 2006CrossRefGoogle Scholar
20Gao, F.M.: Hardness estimation of complex oxide materials. Phys. Rev. B 69, 094113 2004CrossRefGoogle Scholar
21Nitani, N., Yamashita, T., Matsuda, T., Kobayashi, S., Ohmichi, T.: Thermophysical properties of rock-like oxide fuel with spinel-yttria stabilized zirconia system. J. Nucl. Mater. 274, 15 1999CrossRefGoogle Scholar
22Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52 2000CrossRefGoogle Scholar
23Zeng, K.Y., Zhu, F.R., Hu, J.Q., Shen, L., Zhang, K., Gong, H.: Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443, 60 2003CrossRefGoogle Scholar
24Park, S.K., Ishikawa, T., Tokura, Y.: Charge-gap formation upon the Verwey transition in Fe3O4. Phys. Rev. B 58, 3717 1998CrossRefGoogle Scholar
25Antonov, V.N., Harmon, B.N., Antropov, V.P., Perlov, A.Y., Yaresko, A.N.: Electronic structure and magneto-optical Kerr effect of Fe3O4 and Mg2+- or Al3+-substituted Fe3O4. Phys. Rev. B 64, 134410 2001CrossRefGoogle Scholar
26Szotek, Z., Temmerman, W.M., Kodderitzsch, D., Svane, A., Petit, L., Winter, H.: Electronic structures of normal and inverse spinel ferrites from first principles. Phys. Rev. B 74, 174431 2006CrossRefGoogle Scholar
27Selvan, R.K., Augustin, C.O., Sanjeeviraja, C., Pol, V.G., Gedanken, A.: Optimization of sintering on the structural, electrical and dielectric properties of SnO2 coated CuFe2O4 nanoparticles. Mater. Chem. Phys. 99, 109 2006CrossRefGoogle Scholar
28Vanelp, J., Wieland, J.L., Eskes, H., Kuiper, P., Sawatzky, G.A., Degroot, F.M.F., Turner, T.S.: Electronic-structure of CoO, Li-doped CoO, and LiCoO2. Phys. Rev. B 44, 6090 1991CrossRefGoogle Scholar
29Pejova, B., Isahi, A., Najdoski, M., Grozdanov, I.: Fabrication and characterization of nanocrystalline cobalt oxide thin films. Mater. Res. Bull. 36, 161 2001CrossRefGoogle Scholar
30Goodman, A.M.: Photoemission of holes and electrons from aluminum into aluminum oxide. J. Appl. Phys. 41, 2176 1970CrossRefGoogle Scholar
31Mo, S.D., Ching, W.Y.: Electronic and optical properties of theta-Al2O3 and comparison to alpha-Al2O3. Phys. Rev. B 57, 15219 1998CrossRefGoogle Scholar
32Goodlet, G., Faty, S., Cardoso, S., Freitas, P.P., Simoes, A.M.P., Ferreira, M.G.S., Belo, M.D.: The electronic properties of sputtered chromium and iron oxide films. Corros. Sci. 46, 1479 2004CrossRefGoogle Scholar
33Ghijsen, J., Tjeng, L.H., Vanelp, J., Eskes, H., Westerink, J., Sawatzky, G.A., Czyzyk, M.T.: Electronic-structure of Cu2O and CuO. Phys. Rev. B 38, 11322 1988CrossRefGoogle ScholarPubMed
34Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H., Hosono, H., Hamada, N.: Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J. Appl. Phys. 88, 4159 2000CrossRefGoogle Scholar
35Lide, D.R.: CRC Handbook of Chemistry and Physics CRC Press 2002Google Scholar
36Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 1976CrossRefGoogle Scholar
37Windisch, C.F., Exarhos, G.J., Ferris, K.F., Engelhard, M.H., Stewart, D.C.: Infrared transparent spinel films with p-type conductivity. Thin Solid Films 398, 45 2001CrossRefGoogle Scholar
38Windisch, C.F., Ferris, K.F., Exarhos, G.J.: Synthesis and characterization of transparent conducting oxide cobalt-nickel spinel films. J. Vac. Sci. Technol., A 19, 1647 2001CrossRefGoogle Scholar
39Tsuda, N., Nasu, K., Fujimori, A., Siratori, K.: Electronic Conduction in Oxides Springer Berlin 2000 54168199268CrossRefGoogle Scholar
40Nkeng, P., Poillerat, G., Koenig, J.F., Chartier, P., Lefez, B., Lopitaux, J., Lenglet, M.: Cobaltzation of spinel-type cobalt and nickel-oxide thin-films by x-ray near grazing diffraction, transmission and reflectance spectroscopies, and cyclic voltammetry. J. Electrochem. Soc. 142, 1777 1995CrossRefGoogle Scholar
41Lu, Z.G., Zhu, J.H., Payzant, E.A., Paranthaman, M.P.: Electrical conductivity of the manganese chromite spinel solid solution. J. Am. Ceram. Soc. 88, 1050 2005CrossRefGoogle Scholar
42Windisch, C.F., Ferris, K.F., Exarhos, G.J., Sharma, S.K.: Conducting spinel oxide films with infrared transparency. Thin Solid Films 420, 89 2002CrossRefGoogle Scholar
43Park, Y.D., Hanbicki, A.T., Erwin, S.C., Hellberg, C.S., Sullivan, J.M., Mattson, J.E., Ambrose, T.F., Wilson, A., Spanos, G., Jonker, B.T.: A group-IV ferromagnetic semiconductor: MnxGe1–x. Science 295, 651 2002CrossRefGoogle ScholarPubMed
44Dunitz, J.D., Orgel, L.E.: Electronic properties of transition-metal oxides. 2. Cation distribution amongst octahedral and tetrahedral sites. J. Phys. Chem. Solids 3, 318 1957CrossRefGoogle Scholar
45Miller, A.: Distribution of cations in spinels. J. Appl. Phys. 30, S24 1959CrossRefGoogle Scholar
46Miles, P.A., Westphal, W.B., Vonhippel, A.: Dielectric spectroscopy of ferromagnetic semiconductors. Rev. Mod. Phys. 29, 279 1957CrossRefGoogle Scholar
47Jacob, K.T., Alcock, C.B.: Activities and their relation to cation distribution in NiAl2O4–MgAl2O4 spinel solid-solutions. J. Solid State Chem. 20, 79 1977CrossRefGoogle Scholar
48Krezhov, K., Konstantinov, P.: Cationic distributions in the binary oxide spinels MxCo3–xO4 (M = Mg,Cu,Zn,Ni). Physica B (Amsterdam) 234, 157 1997CrossRefGoogle Scholar
49Sampanthar, J.T., Zeng, H.C.: Synthesis of CoIICoIII2−xAlx O4−Al2O3 nanocomposites via decomposition of CoII0.73 CoIII0.27(OH)2.00(NO3)0.23(CO3)0.02⋅0.5H2O in a sol-gel-derived γ-Al2O3 matrix. Chem. Mater. 13, 4722 2001CrossRefGoogle Scholar
50Naghash, A.R., Etsell, T.H., Xu, S.: XRD and XPS study of Cu–Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts. Chem. Mater. 18, 2480 2006CrossRefGoogle Scholar
51Nydegger, M.W., Couderc, G., Langell, M.A.: Surface composition of CoxNi1–xO solid solutions by x-ray photoelectron and Auger spectroscopies. Appl. Surf. Sci. 147, 58 1999CrossRefGoogle Scholar
52Kim, J.G., Pugmire, D.L., Battaglia, D., Langell, M.A.: Analysis of the NiCo2O4 spinel surface with Auger and x-ray photoelectron spectroscopy. Appl. Surf. Sci. 165, 70 2000CrossRefGoogle Scholar
53Fonstad, C.G., Rediker, R.H.: Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911 1971CrossRefGoogle Scholar
54Kawazoe, H., Ueda, K.: Transparent conducting oxides based on the spinel structure. J. Am. Ceram. Soc. 82, 3330 1999CrossRefGoogle Scholar
55Ingram, B.J., Mason, T.O., Asahi, R., Park, K.T., Freeman, A.J.: Electronic structure and small polaron hole transport of copper aluminate. Phys. Rev. B 64, 155114 2001CrossRefGoogle Scholar
56Kim, H., Gilmore, C.M., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451 1999CrossRefGoogle Scholar
57Kudo, A., Yanagi, H., Hosono, H., Kawazoe, H.: SrCu2O2: A p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73, 220 1998CrossRefGoogle Scholar
58Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer Corporation Eden Prairie, MN 1992Google Scholar
59Eriksson, M., Sainio, J., Lahtinen, J.: Chromium deposition on ordered alumina films: An x-ray photoelectron spectroscopy study of the interaction with oxygen. J. Chem. Phys. 116, 3870 2002CrossRefGoogle Scholar
60Sloczynski, J., Janas, J., Machej, T., Rynkowski, J., Stoch, J.: Catalytic activity of chromium spinels in SCR of NO with NH3. Appl. Catal. Environ. 24, 45 2000CrossRefGoogle Scholar
61Kawatsura, K., Takeshima, N., Imaoku, T., Takahiro, K., Mokuno, Y., Horino, Y., Sekioka, T., Terasawa, M.: High-resolution x-ray spectroscopy for copper and copper oxides and a new WDX system using an ion microbeam. Nucl. Instrum. Methods Phys. Res., Sect. B 193, 877 2002CrossRefGoogle Scholar
62Gillot, B., Buguet, S., Kester, E., Baubet, C., Tailhades, P.: Cation valencies and distribution in the spinels CoxCuyMnz FeuO4+δ (δ ⩾ 0) thin films studied by x-ray photoelectron spectroscopy. Thin Solid Films 357, 223 1999CrossRefGoogle Scholar
63Asbrink, S., Waskowska, A., Talik, E.: Distribution of metal ions and magnetic susceptibility in CuGaMnO4 spinel. J. Phys. Chem. Solids 60, 573 1999CrossRefGoogle Scholar
64Severino, F., Brito, J.L., Laine, J., Fierro, J.L.G., Agudo, A.L.: Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts. J. Catal. 177, 82 1998CrossRefGoogle Scholar
65Li, F., Zhang, L.H., Evans, D.G., Duan, X.: Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides. Colloids Surf., A 244, 169 2004CrossRefGoogle Scholar
66Park, P.W., Ledford, J.S.: Characterization and CO oxidation activity of Cu/Cr/Al2O3 catalysts. Ind. Eng. Chem. Res. 37, 887 1998CrossRefGoogle Scholar
67Endrino, J.L., Fox-Rabinovich, G.S., Reiter, A., Veldhuis, S.V., Galindo, R.E., Albella, J.M., Marco, J.F.: Oxidation tuning in AlCrN coatings. Surf. Coat. Technol. 201, 4505 2007CrossRefGoogle Scholar
68Pollini, I., Mosser, A., Parlebas, J.C.: Electronic, spectroscopic and elastic properties of early transition metal compounds. Phys. Rep.-Rev. Sec. Phys. Lett. 355, 1 2001Google Scholar
69Molina, R., Poncelet, G.: Alpha-alumina-supported nickel catalysts prepared with nickel acetylacetonate. 2. A study of the thermolysis of the metal precursor. J. Phys. Chem. B 103, 11290 1999CrossRefGoogle Scholar
70Sloczynski, J., Ziolkowski, J., Grzybowska, B., Grabowski, R., Jachewicz, D., Wcislo, K., Gengembre, L.: Oxidative dehydrogenation of propane on NixMg1–xAl2O4 and NiCr2O4 spinels. J. Catal. 187, 410 1999CrossRefGoogle Scholar
71Roginskaya, Y.E., Morozova, O.V., Lubnin, E.N., Ulitina, Y.E., Lopukhova, G.V., Trasatti, S.: Characterization of bulk and surface composition of CoxNi1–xOy mixed oxides for electrocatalysis. Langmuir 13, 4621 1997CrossRefGoogle Scholar
72Emin, D.: Small polarons. Phys. Today 35, 34 1982CrossRefGoogle Scholar
73Bosman, A.J., Vandaal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1 1970CrossRefGoogle Scholar
74Degiorgi, L., Wachter, P., Ihle, D.: Small-polaron conductivity in magnetite. Phys. Rev. B 35, 9259 1987CrossRefGoogle ScholarPubMed
75Verwey, E.J., Haayman, P.W., Romeijn, F.C.: Physical properties and cation arrangement of oxides with spinel structures. 2. Electronic conductivity. J. Chem. Phys. 15, 181 1947CrossRefGoogle Scholar
76Fayek, M.K., Ata-Allah, S.S.: 57Fe Mössbauer and electrical studies of the (NiO)–(Cr2O3)x–(Fe2O3)2–x system. Phys. Status Solidi A 198, 457 2003CrossRefGoogle Scholar
77King, W.J., Tseung, A.C.C.: The reduction of oxygen on nickel-cobalt oxides—II. Correlation between crystal structure and activity of Co2NiO4 and related oxides. Electrochim. Acta 19, 493 1974CrossRefGoogle Scholar
78Zunger, A.: Practical doping principles. Appl. Phys. Lett. 83, 57 2003CrossRefGoogle Scholar
79Xiong, G., Wilkinson, J., Mischuck, B., Tuzemen, S., Ucer, K.B., Williams, R.T.: Control of p- and n-type conductivity in sputter deposition of undoped ZnO. Appl. Phys. Lett. 80, 1195 2002CrossRefGoogle Scholar
80Chen, T.K.: Preparation, structure, and properties of AlCoCrCuFeNi multi-element nitride and oxide films by reactive sputtering. Ph.D. Thesis, National Dong Hwa University, Hualien, Taiwan,2008Google Scholar
81Duan, N., Sleight, A.W., Jayaraj, M.K., Tate, J.: Transparent p-type conducting CuScO2 + x films. Appl. Phys. Lett. 77, 1325 2000CrossRefGoogle Scholar
82Rosa-Toro, A. La, Berenguer, R., Quijada, C., Montilla, F., Morallon, E., Vazquez, J.L.: Preparation and characterization of copper-doped cobalt oxide electrodes. J. Phys. Chem. B 110, 24021 2006CrossRefGoogle ScholarPubMed
83Pan, F.M., Stair, P.C., Fleisch, T.H.: Chemisorption of pyridine and pyrrole on iron oxide surfaces studied by XPS. Surf. Sci. 177, 1 1986CrossRefGoogle Scholar
84Dorris, S.E., Mason, T.O.: Electrical-properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71, 379 1988CrossRefGoogle Scholar