Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-08-01T18:33:02.790Z Has data issue: false hasContentIssue false

High lithium conductivity in Li1-2xCaxSi2N3

Published online by Cambridge University Press:  26 April 2011

Eiichirou Narimatsu*
Affiliation:
Nano-Ceramics Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Yoshinobu Yamamoto
Affiliation:
Nano-Ceramics Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Takashi Takeda
Affiliation:
Nano-Ceramics Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Toshiyuki Nishimura
Affiliation:
Nano-Ceramics Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Naoto Hirosaki
Affiliation:
Nano-Ceramics Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
*
a)Address all correspondence to this author. e-mail: NARIMATSU.Eiichirou@nims.go.jp
Get access

Abstract

Various compositions of Li1-2xCaxSi2N3 (x = 0–0.2) were synthesized by the reaction of Li3N, Si3N4, and Ca3N2 at temperatures of 1873–2073 K. Ca was incorporated into the LiSi2N3 host lattice to form a solid solution of Li1-2xCaxSi2N3. The activation energy for ionic conduction was decreased and ionic conductivity at room temperature was enhanced by Ca doping. At 298 K, the ionic conductivity of densified Li1-2xCaxSi2N3 (x = 0.075) ceramic reached 1.6 × 10−5 S m−1, almost four orders of magnitude higher than that of densified Li1-2xCaxSi2N3 (x = 0) ceramic (3.1 × 10−9 S m−1). The change in the LiSi2N3 framework upon Ca doping decreased the interaction between the ions and increased the number of defects in the structure, making it easier for mobile Li+ ions to migrate. Moreover, the incorporation of aliovalent substitutional Ca2+ ions in the LiSi2N3 lattice is expected to create Li+ vacancies (VLi) for charge compensation (Li1-2xCaxVLiSi2N3), thereby increasing the number of mobile Li+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rabenau, A.: Lithium nitride and related materials case study of the use of modern solid state research techniques. Solid State Ion 6, 277 (1982).CrossRefGoogle Scholar
2.Yamane, H., Kikkawa, S., and Koizumi, M.: High- and low-temperature phases of lithium boron nitride, Li3BN2: Preparation, phase relation, crystal structure, and ionic conductivity. J. Solid State Chem. 71, 1 (1987).Google Scholar
3.Yamane, H., Kikkawa, S., and Koizumi, M.: Lithium aluminum nitride, Li3AlN2 as a lithium solid electrolyte. Solid State Ion 15, 51 (1985).CrossRefGoogle Scholar
4.Yamane, H., Kikkawa, S., and Koizumi, M.: Preparation of lithium silicon nitrides and their lithium ion conductivity. Solid State Ion 25, 183 (1987).Google Scholar
5.Hartwig, P., Weppner, W., and Wichelhaus, W.: Fast ionic lithium conduction in solid lithium nitride chloride. Mater. Res. Bull. 14, 493 (1979).CrossRefGoogle Scholar
6.Weppner, W., Hartwig, P., and Rabenau, A.: Consideration of lithium nitride halides as solid electrolytes in practical galvanic cell applications. J. Power Sources 6, 251 (1981).Google Scholar
7.David, J., Laurent, Y., Charlot, J.P., and Lang, J.: Etude cristallographique d’un nitrure I 42 53. La structure tetraedrique type wurtzite de LiSi2N3. Bull. Soc. Fr. Mineral Crystallogr. 96, 21 (1973).Google Scholar
8.Orth, M. and Schnick, W.: Zur Kenntnis von LiSi2N3: Synthese und Verfeinerung der Kristallstruktur. Z. Anorg. Allg. Chem. 625, 1426 (1999).Google Scholar
9.Anderson, A.J., Blair, R.G., Hick, S.M., and Kaner, R.B.: Microwave initiated solid-state metathesis routes to Li2SiN2. J. Mater. Chem. 16, 1318 (2006).Google Scholar
10.Bhamra, M.S. and Fray, D.J.: The electrochemical properties of Li3AlN2 and Li2SiN2. J. Mater. Sci. 30, 5381 (1995).CrossRefGoogle Scholar
11.Juza, R., Weber, H.H., and Meyer-Simon, E.: Uber ternare Nitride und Oxonitride von Elementen der 4. Gruppe. Z. Anorg. Allg. Chem. 273, 48 (1953).Google Scholar
12.Dadd, A.T. and Hubberstey, P.: Solutions of lithium salts in liquid lithium: Interaction between silicon and nitrogen to form the ternary compound, Li5SiN3. J. Chem. Soc. Dalton Trans. 2175 (1982).CrossRefGoogle Scholar
13.Ischenko, V., Kienle, L., and Jansen, M.: Formation and structure of LiSi2N3-AlN solid solutions. J. Mater. Sci. 37, 5305 (2002).CrossRefGoogle Scholar
14.Wu, X., Wen, Z., Xu, X., and Han, J.: Synthesis and ionic conductivity of Mg-doped Li2TiO3. Solid State Ion 179, 1779 (2008).Google Scholar
15.Bennani, F. and Husson, E.: Impedance spectroscopy analysis of pure and Ni-doped lithium tantalite. J. Eur. Ceram. Soc. 21, 847 (2001).CrossRefGoogle Scholar
16.Kanno, R., Takeda, Y., Takada, K., and Yamamoto, O.: Ionic conductivity and phase transition of the spinel system Li2-2xM1+xCl4 (M = Mg, Mn, Cd). J. Electrochem. Soc. 131, 469 (1984).CrossRefGoogle Scholar
17.Thangadurai, V. and Weppner, W.: Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. J. Solid State Chem. 179, 974 (2006).Google Scholar
18.Chung, H.-T., Kim, J.-G., and Kim, H.-G.: Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M = Sn, Zr, Mn, Ge). Solid State Ion 107, 153 (1998).Google Scholar
19.Belous, A., Pashkova, E., Gavrilenko, O., V’yunov, O., and Kovalenko, L.: Solid electrolytes based on lithium-containing lanthanum metaniobates. J. Eur. Ceram. Soc. 24, 1301 (2004).CrossRefGoogle Scholar
20.Lapp, T., Skaarup, S., and Hooper, A.: Ionic conductivity of pure and doped Li3N. Solid State Ion 11, 97 (1983).Google Scholar
21.Asai, T., Nishida, K., and Kawai, S.: Synthesis and ionic conductivity of CuxLi3-xN. Mater. Res. Bull. 19, 1377 (1984).CrossRefGoogle Scholar
22.Mei, A., Wang, X.-L., Feng, Y.-C., Zhao, S.-J., Li, G.-J., Geng, H.-X., Lin, Y.-H., and Nan, C.-W.: Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ion 179, 2255 (2008).CrossRefGoogle Scholar
23.Mei, A., Wang, X.-L., Lan, J.-L., Feng, Y.-C., Geng, H.-X., Lin, Y.-H., and Nan, C.-W.: Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte. Electrochim. Acta 55, 2958 (2010).CrossRefGoogle Scholar
24.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).Google Scholar
25.Dahl, P.I., Haugsrud, R., Lein, H.L., Grande, T., Norby, T., and Einarsrud, M.: Synthesis, densification and electrical properties of strontium cerate ceramics. J. Eur. Ceram. Soc. 27, 4461 (2007).CrossRefGoogle Scholar
26.Norby, T. and Hartmanova, M.: Electrical conductivity and ionic transport number of YSZ and Cr-doped YSZ single crystals at 200–1000°C. Solid State Ion 67, 57 (1993).Google Scholar
27.Tanaka, I., Kleebe, H.-J., Cinibulk, M.K., Bruley, J., Clarke, D.-R., and Ruhle, M.: Calcium concentration dependence of the intergranular film thickness in silicon nitride. J. Am. Ceram. Soc. 77(4), 911 (1994).CrossRefGoogle Scholar
28.Greil, P., Nitzsche, R., Friedrich, H., and Hermel, W.: Evaluation of oxygen content on silicon nitride powder surface from the measurement of the isoelectric point. J. Eur. Ceram. Soc. 7, 353 (1991).Google Scholar
29.Bermudo, J., Osendi, M.I., and Fierro, J.L.G.: Oxygen distribution in AlN and Si3N4 powders as revealed by chemical and spectroscopy techniques. Ceram. Int. 26, 141 (2000).CrossRefGoogle Scholar
30.Li, Y., Liu, M., Gong, J., Chen, Y., Tang, Z., and Zhang, Z.: Grain-boundary effect in zirconia stabilized with yttria and calcia by electrical measurements. Mater. Sci. Eng. B 103, 108 (2003).CrossRefGoogle Scholar
31.Zhan, T.S., Ma, J., Chen, Y.Z., Luo, L.H., Kong, L.B., and Chan, S.H.: Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes. Solid State Ion 177, 1227 (2006).Google Scholar
32.Gruener, G., De Sousa Meneses, D., Odier, P., and Loup, J.P.: Influence of the network on conductivity in ternary CaO-Al2O3-SiO2 glasses and melts. J. Non Cryst. Solids 281, 117 (2001).Google Scholar