Hostname: page-component-68945f75b7-qvshk Total loading time: 0 Render date: 2024-08-06T07:15:26.520Z Has data issue: false hasContentIssue false

High purity isotopically enriched 70Ge and 74Ge single crystals: Isotope separation, growth, and properties

Published online by Cambridge University Press:  31 January 2011

Kohei Itoh
Affiliation:
University of California at Berkeley and Lawrence Berkeley Laboratory, Berkeley, California 94720
W.L. Hansen
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
E.E. Haller
Affiliation:
University of California at Berkeley and Lawrence Berkeley Laboratory, Berkeley, California 94720
J.W. Farmer
Affiliation:
University of Missouri, Columbia, Missouri 65211
V.I. Ozhogin
Affiliation:
Russian Science Center, Kurchatov Institute, 123182 Moscow, Russia
A. Rudnev
Affiliation:
Russian Science Center, Kurchatov Institute, 123182 Moscow, Russia
A. Tikhomirov
Affiliation:
Russian Science Center, Kurchatov Institute, 123182 Moscow, Russia
Get access

Abstract

70Ge and 74Ge isotopes were successfully separated from natural Ge and zone purified. Several highly enriched, high purity 70Ge and 74Ge single crystals were grown by the vertical Bridgman method. The growth system was designed for reliable growth of low dislocation density, high purity Ge single crystals of very small weight (∼4 g). A 70Ge and a 74Ge crystal were selected for complete characterization. In spite of the large surface to volume ratio of these ingots, both 70Ge and 74Ge crystals contain low electrically active chemical net-impurity concentrations of ∼2 × 1012 cm−3, which is two orders of magnitude better than that of 74Ge crystals previously grown by two different groups.1,2 Isotopic enrichment of the 70Ge and the 74Ge crystals is 96.3% and 96.8%, respectively. The residual donors and acceptors present in both crystals were identified as phosphorus and copper, respectively. In addition, less than 1011 cm−3 gallium, aluminum, and indium were found in the 70Ge crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shlimak, I.S., Zarubin, L.I., Ionov, A.N., Vorobkalo, F.M., Zabrodskii, A.G., and Nemish, I.Y., Sov. Tech. Phys. Lett. 9, 377 (1983).Google Scholar
2Geballe, T.H. and Hull, G., Phys. Rev. 110, 773 (1958).CrossRefGoogle Scholar
3Buschert, R. C., Merlini, A. E., Pace, S., Rodriguez, S., and Grimsditch, M. H., Phys. Rev. B 38, 5219 (1988).CrossRefGoogle Scholar
4Vasenko, A. A., Vereshchagin, Yu. I., Kirpichnikov, I. V., Kuznetsov, V. A., Prusakov, V.N., Rudnev, A.I., Starostin, A.S., and Tikhomirv, A.V., Prib. Tekh. Eksp. N2, 56 (1989), in Russian [Instrum. Exp. Tech. 32, 312 (1989)].Google Scholar
5CERN Courier 31, 14 (1991).Google Scholar
6Anthony, T. R., Banholzer, W. F., Fleischer, J. F., Wei, L., Kuo, P. K., Thomas, R.L., and Pryor, R.W., Phys. Rev. B 42, 1104 (1990).CrossRefGoogle Scholar
7Collins, A. T., Lawson, S. C., Davies, G., and Kanda, H., Phys. Rev. Lett. 65, 891 (1990).CrossRefGoogle Scholar
8Collins, A. T., Lawson, S. C., Davies, G., and Kanda, H., Mod. Phys. Lett. B 5, 407 (1991).CrossRefGoogle Scholar
9Holloway, H., Hass, K. C., Tamor, M. A., Anthony, T. R., and Banholzer, W. F., Phys. Rev. B 44, 7123 (1991).CrossRefGoogle Scholar
10Neutron Transmutation Doping of Semiconductor Materials, edited by Larrabee, R. D. (Plenum, New York, 1984).CrossRefGoogle Scholar
11Haller, E.E., Semicond. Sci. Technol. 5, 319 (1990).CrossRefGoogle Scholar
12Haegel, N. M., Hueschen, M. R., and Haller, E. E., Infrared Phys. 25, 273 (1985).CrossRefGoogle Scholar
13Haller, E. E. and Goulding, F. S., in Handbook of Semiconductors, Chap. 6c, edited by Hilsum, C. (North-Holland, Amsterdam, 1980), Vol. 4, p. 799, second edition in press.Google Scholar
14Wang, N., Sadoulet, B., Shutt, T., Beeman, J., Haller, E. E., Lange, A., Park, I., Ross, R., Stanton, C., and Steiner, H., IEEE Trans. Nucl. Sci. NS-35, No. 1, 55 (1988).CrossRefGoogle Scholar
15Sadoulet, B., Shutt, T., Wang, N., Commings, A., Barnes, P., Beeman, J., Ernes, J., Giraud-Heraud, Y., Haller, E. E., Lange, A., Rich, J., and Ross, R., in Low Temperature Detectors for Neutrinos and Dark Matter III, edited by Brogiato, L., Camin, D. V., and Fiorini, E. (Editions Frontiers, Gif sur Yvette, 1990), p. 227.Google Scholar
16Lange, A. E., Kreysa, E., McBride, S. E., Richards, P. L., and Haller, E. E., Int. J. IR MM Waves 4, 689 (1983).CrossRefGoogle Scholar
17Table of Isotopes, 7th ed., edited by Lederer, C.M. and Shirley, V. S. (John Wiley & Sons, New York, 1978).Google Scholar
18Haller, E.E., Palaio, N.P., Rodder, M., Hansen, W.L., and Kreysa, E., Neutron Transmutation Doping of Semiconductor Materials, edited by Larrabee, R. D. (Plenum, New York, 1984), p. 21.CrossRefGoogle Scholar
19Fuchs, H. D., Grein, C. H., Thomsen, C., Cardona, M., Hansen, W. L., Haller, E. E., and Itoh, K., Phys. Rev. B 43, 4835 (1991).CrossRefGoogle Scholar
20Davies, G., Lightowlers, E., Itoh, K., Hansen, W. L., and Haller, E. E., Proc. 5th Int. Conf. on Shallow Impurities in Semiconductors, Kobe, Japan (1992, in press).Google Scholar
21Abbakumov, E.I., Bazhenov, V.A., Verbin, Yu. V., Vlasov, A.A., Dorogobed, A. S., Kaliteevskii, A. K., Kornilov, V. F., Levine, D. M., Mikerin, E.I., Sazykin, A.A., Sergeev, V.I., and Soloviev, G.S., At. Energ. 67, 255 (1989), in Russian [Sov. J. At. Energy 67, 739 (1989)].CrossRefGoogle Scholar
22Olander, D. R., Sci. Am. 239, 37 (1978).CrossRefGoogle Scholar
23The graphite boat and crucible were made and purified by Carbon USA, Ultra Carbon Division, USA.Google Scholar
24Hubbard, G.S., Haller, E.E., and Hansen, W.L., Nucl. Instrum. Methods 130, 481 (1978).CrossRefGoogle Scholar
25Haller, E.E., Hansen, W.L., Luke, P.N., McMurray, R., and Jarrett, B., IEEE Trans. Nucl. Sci. NS-29, No. 1, 745 (1982).CrossRefGoogle Scholar
26Skolnick, M. S., in Landolt-Bornstein Data Series III (Springer, Berlin, 1989), Vol. 22b, p. 466.Google Scholar
27Kogan, Sh. M. and Lifshits, T.M., Phys. Status Solidi A 39, 11 (1977).CrossRefGoogle Scholar