Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-29T21:38:25.095Z Has data issue: false hasContentIssue false

Highly oriented, textured diamond films on silicon via bias-enhanced nucleation and textured growth

Published online by Cambridge University Press:  31 January 2011

B.R. Stoner
Affiliation:
Kobe Steel USA Ltd., Electronic Materials Center, 79 TW Alexander Drive, P.O. Box 13608, Research Triangle Park, North Carolina 27709
S.R. Sahaida
Affiliation:
Kobe Steel USA Ltd., Electronic Materials Center, 79 TW Alexander Drive, P.O. Box 13608, Research Triangle Park, North Carolina 27709
J.P. Bade
Affiliation:
Kobe Steel USA Ltd., Electronic Materials Center, 79 TW Alexander Drive, P.O. Box 13608, Research Triangle Park, North Carolina 27709
P. Southworth
Affiliation:
Kobe Steel Europe Ltd., Research Laboratory, 10 Nugent Road, Surrey Research Park, Guildford, Surrey, GU2 5AF, United Kingdom
P.J. Ellis
Affiliation:
Kobe Steel Europe Ltd., Research Laboratory, 10 Nugent Road, Surrey Research Park, Guildford, Surrey, GU2 5AF, United Kingdom
Get access

Abstract

Highly oriented diamond films were grown on single-crystal silicon substrates. Textured films were first nucleated by a two-step process that involved the conversion of the silicon surface to an epitaxial SiC layer, followed by bias-enhanced nucleation. The nucleation stage, which produced a partially oriented diamond film, was immediately followed by a (100) textured growth process, thus resulting in a film surface where approximately 100% of the grains are epitaxially oriented relative to the silicon substrate. The diamond films were characterized by both SEM and Raman spectroscopy. Structural defects in the film are discussed in the context of their potential effect on the electrical characteristics of the resulting film.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 10361038 (1991).Google Scholar
2Stoner, B. R., Williams, B. E., Wolter, S. D., Nishimura, K., and Glass, J. T., J. Mater. Res. 7, 257260 (1992).CrossRefGoogle Scholar
3Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 1106711084 (1992).Google Scholar
4Stoner, B. R. and Glass, J.T., Appl. Phys. Lett. 60, 698700 (1992).CrossRefGoogle Scholar
5Stoner, B. R., Ma, G-H. M., Wolter, S. D., Zhu, W., Wang, Y. C., Davis, R. F., and Glass, J. T., submitted to Diamond and Related Materials, presented at Diamond Films '92, paper No. 4.3. (1992).Google Scholar
6Zhu, W., Wang, X. H., Stoner, B. R., Ma, G. H., Kong, H. S., Braun, M. W. H., and Glass, J. T., Phys. Rev. B (in press).Google Scholar
7Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett, (in press).Google Scholar
8Clausing, R.E., Heatherly, L., Specht, E.D., and Moore, K.L. in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1991) p. 575.Google Scholar
9Wild, C., Miiller-Sebert, W., Eckermann, T., and Koidl, P., Electrochem. Soc. Proc. 91-8, 224 (1991).Google Scholar
10Wild, C., Koidl, P., Herres, N., Miiller-Sebert, W., and Ecker-mann, T., Presented at the 2nd Int. Conf. on Diamond Materials, ECS Spring Meeting, Washington, DC, May 1991.Google Scholar
11Drift, A. van der, Philips Res. Rep. 22, 267 (1967).Google Scholar
12Wild, C., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).Google Scholar
13The Experimental Strategies Foundation, P.O. Box 27254, Seattle, WA 98125.Google Scholar
14Koidl, P., Wild, C., Herres, N., Muller, W., Walcher, H., Walcher, R., Locher, R., Kohl, R., Samlenski, R., Fleming, G., and Brenn, R., to appear in Diamond and Related Materials, presented at Diamond Films '92, Heidelberg, Germany, Aug. 31-Sept. 3, 1992, paper No. 5.2 (1992).Google Scholar
15Maree, P.M.J., Barbour, J.C., Veen, J.F.v.d., Kavanagh, K.L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 44134420 (1987).CrossRefGoogle Scholar
16Matyi, R. J., Lee, J. W., and Schaake, H. F., J. Electron. Mater. 17, 8793 (1988).CrossRefGoogle Scholar
17Windheim, J. A. von, Venkatesan, V., Malta, D. M., and Das, K., submitted to Diamond and Related Materials, presented at Diamond Films '92, Heidelberg, Germany, Aug. 31-Sept. 3, paper No. 13.88 (1992).Google Scholar
18Visser, E. P., Bauhuis, G. J., Janssen, G., Vollenberg, W., Enckevort, W. J. P. van, and Giling, L. J., J. Phys.: Condens. Matter 4, 7365 (1992).Google Scholar
19Geis, M. W., Smith, H.I., Argoitia, A., Angus, J., Ma, G-H.M., Glass, J.T., Buttler, J., Robinson, C. J., and Pryor, R., Appl. Phys. Lett. 58, 24852487 (1991).CrossRefGoogle Scholar