Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T02:53:46.220Z Has data issue: false hasContentIssue false

Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior

Published online by Cambridge University Press:  31 January 2011

Tze-Chiun Chen
Affiliation:
Materials Science and Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Chai-Liang Thio
Affiliation:
Materials Science and Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Seshu B. Desu
Affiliation:
Materials Science and Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Get access

Abstract

In this research, a fatigue model for ferroelectric materials is proposed. The reasons for the electrical fatigue resistance of SrBi2Ta2O9 (SBT), SrBi2Nb2O9 (SBN), and PbZr1−xTixTixO3 (PZT) are discussed in terms of the bulk ionic conductivities of the compounds. To obtain the bulk ionic conductivity of SBT and SBN, we have used impedance spectroscopy which provides an effective method that allows us to separate the individual contributions of bulk, grain boundaries, and electrode-ferroelectric interfaces from the total capacitor impedance. The bulk ionic conductivities of SBT and SBN (∼10−7 S/cm) are much higher than those of the perovskite ferroelectrics, e.g., PZT (∼10−11–10−10 S/cm). The high ionic conductivities led us to conclude that the good fatigue resistance of SrBi2Ta2O9 and SrBi2Nb2O9 is due to easy recovery of defects. Specifically, oxygen vacancies entrapped within the capacitors are easily released, resulting in limited space charge buildup and domain wall pinning during the polarization reversal process. However, the oxygen vacancies in PZT are trapped at trap sites to become space charges, resulting in capacitor fatigue.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kwok, C. K. and Desu, S. B., Appl. Phys. Lett. 60 (12), 1430 (1992).CrossRefGoogle Scholar
2.Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
3.Kwok, C. K., Desu, S. B., and Vijay, D. P., Ferroelectric Lett. 16 (5–6), 143 (1994).CrossRefGoogle Scholar
4.Sanchez, L. E., Dion, D. T., Wu, S. Y., and Naik, I. K., Ferroelectrics 116, 1 (1991).CrossRefGoogle Scholar
5.Dey, S. K., Budd, K. D., and Payne, D. A., J. Am. Ceram. Soc. 7, C295 (1987), and IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 80 (1988).Google Scholar
6.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
7.Budd, K. D., Dey, S. K., and Payne, D. A., Br. Ceram. Soc. Proc. 36, 107 (1985).Google Scholar
8.Fukushima, J., Kodaira, K., and Matsushita, I., J. Mater. Sci. 19, 595 (1984).CrossRefGoogle Scholar
9.Krupanidhi, S. B., Maffei, N., Sayer, M., and Dl-Assal, K., J. Appl. Phys. 54, 6601 (1983).CrossRefGoogle Scholar
10.Takayama, R. and Tomita, T., J. Appl. Phys. 65, 1666 (1989).CrossRefGoogle Scholar
11.Kingon, A., Ameen, M., Auciello, O., Gifford, K., Al-Shareef, H., Graettinger, T., Rou, S-H., and Hren, P., Ferroelectrics 116, 35 (1991).CrossRefGoogle Scholar
12.Chang, J. F. and Desu, S. B., Ceram. Trans. 25, 155 (1992).Google Scholar
13.Peng, C. H. and Desu, S. B., Appl. Phys. Lett. 61 (1), 16 (1992).CrossRefGoogle Scholar
14.Desu, S. B., Peng, C. H., Shi, T., and Agaskar, P. A., J. Electrochem. Soc. 139 (9), 2682 (1992).CrossRefGoogle Scholar
15.Peng, C. H. and Desu, S. B., J. Am. Ceram. Soc. 77 (7), 1799 (1994).CrossRefGoogle Scholar
16.Tao, W., Desu, S. B., and Li, T. K., Mater. Lett. 23, 177 (1995).CrossRefGoogle Scholar
17.Vest, R. W. and Zhu, W., Ferroelectrics 119, 61 (1991).CrossRefGoogle Scholar
18.Spierings, G. A. C. M., Ulenaers, M. J. E., Kampschoer, G. L. M., Van Hal, H. A. M., and Larsen, P. K., J. Appl. Phys. 70, 2290 (1991).CrossRefGoogle Scholar
19.Chang, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
20.Khan, A. R. and Desu, S. B., J. Mater. Sci. 10 (11), 2777 (1995).Google Scholar
21.Vijay, D. P. and Desu, S. B., J. Electrochem. Soc. 140 (9), 2640 (1993).CrossRefGoogle Scholar
22.Bursill, L. A., Reaney, I. M., Vijay, D. P., and Desu, S. B., J. Appl. Phys. 75 (3), 1521 (1994).CrossRefGoogle Scholar
23.Vijay, D. P., Kwok, C. K., Pan, W., and Desu, S. B., ISAF 1992 Proceedings, 408 (1992).Google Scholar
24.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramida, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
25.Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res. 8, 12 (1992).CrossRefGoogle Scholar
26.Bellur, K. R., Al-Shareef, H. N., Rou, S. H., Gifford, K. D., Auciello, O., and Kingon, A. I., ISAF 1992 Proceedings, 448 (1992).Google Scholar
27.Watanabe, H., Mihara, T., Yoshimori, H., and Paz de Araujo, C. A., ISIF 1992 Proceedings, 346 (1992).Google Scholar
28.Dat, R., Lee, J. K., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 67 (4), 572 (1995).CrossRefGoogle Scholar
29.Auciello, O., Al-Shareef, H. N., Gifford, K. D., Lichtenwalner, D. J., Dat, R., Bellur, K. R., Kingon, A. I., and Ramesh, R., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 341.Google Scholar
30.Paz de Araujo, C. A., Cuchlaro, J. D., Scott, M. C., Mcmillan, L. D., and Scott, J. F., Nature 374, 627 (1995).CrossRefGoogle Scholar
31.Desu, S. B., and Vijay, D. P., Mater. Sci. Eng. B32, 75 (1995).CrossRefGoogle Scholar
32.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 83 (1995).CrossRefGoogle Scholar
33.Lee, J. J., Thio, C. L., and Desu, S. B., J. Appl. Phys. 78 (8), 5073 (1995).CrossRefGoogle Scholar
34.Desu, S. B. and Li, T. K., Mater. Sci. Eng. B34, L4 (1995).CrossRefGoogle Scholar
35.Desu, S. B. and Pan, W., Appl. Phys. Lett. (1995) in press.Google Scholar
36.Li, T. K., Zhu, Y., Desu, S. B., Peng, C., and Nagata, M., Appl. Phys. Lett. (1996) in press.Google Scholar
37.Vijay, D. P., Desu, S. B., Nagata, M., Zhang, X., and Chen, T. C., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 3.Google Scholar
38.Karan, C., IBM Tech. Rep. (1955).Google Scholar
39.Zheludev, I. S., Physics of Crystalline Dielectrics, Electrical Properties (Plenum Press, New York, 1971), Vol. 2, p. 474.CrossRefGoogle Scholar
40.Kudzin, A. Y., Panchenko, T. U., and Yudin, S. P., Sov. Phys. Solid State 16, 1589 (1975).Google Scholar
41.Yoo, I. K. and Desu, S. B., Mater. Sci. Eng. B13, 319 (1992).CrossRefGoogle Scholar
42.Yoo, I. K. and Desu, S. B., Phys. Status Solidi (a) 133, 565 (1992).CrossRefGoogle Scholar
43.Yoo, I. K. and Desu, S. B., J. Electrochem. Soc. 140, L133 (1993).Google Scholar
44.Yoo, I. K. and Desu, S. B., J. Intell. Mater. Syst. Struct. 4, 490 (1993).CrossRefGoogle Scholar
45.Duiker, J. M., Beale, P. D., Scott, J. F., Paz de Araujo, C. A., Melnik, B. M., Cuchtaro, J. D., and McMillan, L. D., J. Appl. Phys. 68, 5783 (1990).CrossRefGoogle Scholar
46.Jiang, Q. Y. and Cross, L. E., J. Mater. Sci. 28, 4536 (1993).CrossRefGoogle Scholar
47. William Warren, L., Dimos, Duane, and Tuttle, Bruce A., J. Am. Ceram. Soc. 77 (10), 2753 (1994).CrossRefGoogle Scholar
48.Scott, J. F., Araujo, C. A., Melnik, B. M., McMillan, L. D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).CrossRefGoogle Scholar
49.Kwok, C. K. and Desu, S. B., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 393.Google Scholar
50.Lee, J. J., Thio, C. L., Bhattacharya, M., and Desu, S. B., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ranesg, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 241.Google Scholar
51.Etsell, T. H. and Flengas, S. N., Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
52.Waser, R., J. Am. Ceram. Soc. 74 (8), 1934 (1991).CrossRefGoogle Scholar
53.Sluyters, J. H., Recl. Trav. Chim. Pays-Bas 79, 1092 (1960).CrossRefGoogle Scholar
54.Bauerle, J. E., J. Phys. Chem. Solids 30, 2657 (1969).CrossRefGoogle Scholar
55.Powers, R. W. and Mitoff, S. W., J. Electrochem. Soc. 122, 226 (1975).CrossRefGoogle Scholar
56.Armstrong, R. D., Dickinson, T., and Willis, P. M., J. Electroanal. Chem. 53, 389 (1974).CrossRefGoogle Scholar
57.Li, T. K., Chen, T. C., Desu, S. B., and Peng, C. S., J. Integrated Ferroelectrics (1995) in press.Google Scholar
58.Chen, T. C., Li, T. K., and Desu, S. B., unpublished.Google Scholar
59.Smolenskii, G. A., Isupov, V. A., and Agranovskaya, A. I., Sov. Phys. Solid State 3, 651 (1961).Google Scholar
60.Smyth, D. M., Ferroelectrics 151, 115 (1994).CrossRefGoogle Scholar
61.Lee, Y. Y., Wu, L., Liang, C. K., and Wu, T. S., Ferroelectrics 138, 11 (1993).CrossRefGoogle Scholar