Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-20T07:56:29.420Z Has data issue: false hasContentIssue false

In situ electron microscopy studies of the inhibition of graphite oxidation by phosphorus

Published online by Cambridge University Press:  03 March 2011

S.G. Oh
Affiliation:
Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849
N.M. Rodriguez*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

A combination of in situ transmission electron microscopy and thermogravimetric techniques has been used to follow the manner by which phosphorus addition to graphite influences its interaction with oxygen. Direct observation of the process shows that the additive completely inhibits the reaction at temperatures below 830 °C. At higher temperatures phosphorus species are found to bond preferentially to the graphite “armchair”{1120} faces leaving the “zigzag” {100} faces vulnerable to attack by oxygen. In situ electron diffraction analysis indicates the formation of a chemical bond between the phosphorus and graphite edge atoms at high temperatures, which involves the formation of a complex believed to become an integral part of the structure. This unique type of chemical bonding is believed to be responsible for the observed thermal stability of P–O species on the graphite atoms at temperatures up to 1050 °C. In a further series of experiments, phosphorus was found to poison the catalytic activity of cobalt, which in its unadulterated state is a very effective promoter of the graphite-oxygen reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Thomas, J. M., in Chemistry andPhysics of Carbon, edited by Walker, P. L. Jr. (Marcel Dekker, New York, 1965), Vol. 1, p. 1.Google Scholar
2Baker, R. T. K., in Carbon and Coal Gasification, NATO ASISeries, edited by Figueiredo, J. L. and Moulijn, J. A. (1986), p. 231.Google Scholar
3McKee, D. W., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. and Thrower, P. A. (Marcel Dekker, New York, 1981), Vol. 16, p. 1.Google Scholar
4Rakszawski, J. F. and Parker, W. E., Carbon 2, 53 (1964).Google Scholar
5Hawtin, P. and Gibson, J. A., in 3rd Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1970), p. 309.Google Scholar
6Navarro, M. C. A. and Jenkins, G. M., in 4th Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1974), p. 392.Google Scholar
7McKee, D. W., Carbon 10, 491 (1972).CrossRefGoogle Scholar
8McKee, D. W., Spiro, C. L., and Lamby, E. J., Carbon 22, 285 (1984).Google Scholar
9Baker, R. T. K., Carbon 24, 715 (1986).CrossRefGoogle Scholar
10Harris, P. S., Feates, F. S., and Reuben, B. G., Carbon 12, 189 (1974).Google Scholar
11Hennig, G. R., in Chemistry andPhysics ofCarbon, edited by Walker, P. L. (Marcel Dekker, New York, 1966), Vol. 2, p. 1.Google Scholar
12Kelly, B. T., Physics of Graphite (Applied Sciences, London, 1981).Google Scholar
13Baker, R.T.K. and Harris, P.S., Carbon 11, 15 (1973).Google Scholar
14Hennig, G. R., Science 147, 733 (1965).Google Scholar
15Thomas, J. M., Carbon 8, 413 (1970).Google Scholar
16Feates, F. S. and Robinson, P. S., in 3rd Conf. Ind. Carbon and Graphite (Society of Chem. Ind., London, 1971), p. 233.Google Scholar
17Evans, E. L., Griffiths, R.J.M., and Thomas, J.M., Science 171, 174 (1971).Google Scholar
18Yang, R. T. and Wong, C., Science 214, 437 (1981).Google Scholar
19Yang, R. T., in Chemistry andPhysics of Carbon, edited by Thrower, P. A. (Marcel Dekker, New York, 1983), Vol. 19, p. 163.Google Scholar
20Chang, H. and Bard, A. J., J. Am. Chem. Soc. 112, 4598 (1990).Google Scholar
21Schlögl, R., Llose, G., and Wesemann, M., Solid State Ionics 42, 183 (1990).Google Scholar
22Chu, X. and Schmidt, L. D., Carbon 29, 1251 (1991).CrossRefGoogle Scholar
23Chu, X., Schmidt, L. D., Chen, S. G., and Yang, R. T., J. Catal. 140, 543 (1993).CrossRefGoogle Scholar
24Dienes, G. F., Hennig, G. R., and Koshiba, W., Proc. Int. Conf. Peaceful Uses of Atomic Energy, Geneva, Switzerland, Paper No. 1195 (1963).Google Scholar
25Marsh, H., O'Hair, E., and Wynne-Jones, W.F.K., Nature 198, 1195 (1963).CrossRefGoogle Scholar
26Otterbein, M. and Bonnetain, L., Compt. Rend. 259 (9), 2563 (1965).Google Scholar
27Yang, R. T. and Wong, C., J. Chem. Phys. 75, 4471 (1981).CrossRefGoogle Scholar
28Pattabiraman, P., Rodriguez, N. M., Jang, B. Z., and Baker, R. T. K., Carbon 28, 867 (1990).Google Scholar
29Rodriguez, N. M., Oh, S. G., Downs, W. B., Pattabiraman, P., and Baker, R.T.K., Rev. Sci. Instrum. 61, 1863 (1990).Google Scholar
30Oh, S. G. and Baker, R. T. K., J. Catal. 128, 137 (1991).Google Scholar
31Yang, R. T. and Wong, C., J. Catal. 82, 245 (1983).CrossRefGoogle Scholar
32The Merck Index, edited by Windholz, M., 13th ed. (Merck & Co., Inc., 1983), p. 1061.Google Scholar
33Weast, K. C., Handbook of Chemistry and Physics, B–127, 63rd ed. (1982–83).Google Scholar
34Corbridge, D. E. C., Phosphorus, an Outline of Its Chemistry and Technology (Elsevier, New York, 1985).Google Scholar
35Morris, E. D. and Nordman, C. E., Inorg. Chem. 8, 1673 (1969).CrossRefGoogle Scholar
36Haiduc, I., The Chemistry of Inorganic Ring Systems (Wiley-Interscience, London, 1970), Vol. 2.Google Scholar
37Chen, C. C., Rodriguez, N. M., and Baker, R. T. K., in Catalyst Deactivation, edited by Bartholomew, C. H. and Butt, J. B. (Elsevier Science Publishing, Amsterdam, 1991), p. 169.Google Scholar
38Oh, S. G., Rodriguez, N. M., and Baker, R. T. K., J. Catal. 136, 584 (1992).CrossRefGoogle Scholar
39Bernard, J., Catal. Rev. Sci. Eng. 3, 93 (1969).Google Scholar
40Oudar, J., Catal. Rev. Sci. Eng. 22, 171 (1980).Google Scholar
41Bartholomew, C. H., Agrawal, P. K., and Katzer, J. R., Adv. Catal. 31, 135 (1982).CrossRefGoogle Scholar
42Wise, H., McCarty, J., and Oudar, J., in Deactivation and Poisoning of Catalysts, edited by Oudar, J. and Wise, H. (Marcel Dekker, New York, 1985), p. 1.Google Scholar
43Bridger, G. W. and Wyrwas, W., Chem. Process Eng. 48, 101 (1967).Google Scholar
44Campbell, K. C., J. Catal. 27, 7 (1972).Google Scholar
45Kiskinova, M. and Goodman, D. W., Surf. Sci. 108, 64 (1981).Google Scholar
46Rodriguez, N. M. and Baker, R. T. K., J. Mater. Res. 8, 1886 (1993).CrossRefGoogle Scholar