Hostname: page-component-6d856f89d9-8l2sj Total loading time: 0 Render date: 2024-07-16T03:46:46.321Z Has data issue: false hasContentIssue false

In situ observation of phase formation in a Cu–In–2Se precursor layer using micro-Raman scattering spectroscopy

Published online by Cambridge University Press:  31 January 2011

Deliang Wang*
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Lei Wan
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*
a) Address all correspondence to this author. e-mail: eedewang@ustc.edu.cn
Get access

Abstract

In situ observation of phase formations in Cu–In–2Se (atomic ratio) precursor layers was carried out using temperature-dependent micro-Raman scattering spectroscopy. Without the protection of a high Se vapor pressure, intermediate In–Se and Cu–Se selenides and CuAu-ordered CuInSe2 (CIS) were easily formed in the amorphous precursor layer, which have atomic structures arranged in a way close to that of α-CIS. The binary selenides were transformed to the α-CIS by in-/out-diffusion of the mobile Cu and Se atoms/ions. The γ-CuSe and α-CIS began to form at a temperature as low as ∼170 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.: Long lifetimes in high-effciency Cu(In,Ga)Se2 solar cells. Prog. Photovoltaics 16, 235 (2008).CrossRefGoogle Scholar
2Rockett, A. and Birkmire, R.W.: CuInSe2 for photovoltaic applications. J. Appl. Phys. 70, R81 (1991).CrossRefGoogle Scholar
3Contreras, M.A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R.: Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovoltaics 7, 311 (1999).3.0.CO;2-G>CrossRefGoogle Scholar
4Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B., and Noufi, R.: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1–xGax)Se2 solar cells. Prog. Photovoltaics 13, 209 (2005).CrossRefGoogle Scholar
5Yamaguchi, T., Matsufusa, J., and Yoshida, A.: Structural properties of CuInxGa1–xSe2 thin films prepared by rf sputtering. J. Appl. Phys. 72, 5657 (1992).CrossRefGoogle Scholar
6Lincot, D., Guillemoles, J.F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J.P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P.P., Benfarah, M., Mogensen, P., and Kerrec, O.: Chalcopyrite thin film solar cells by electrodeposition. Sol. Energy 77, 725 (2004).CrossRefGoogle Scholar
7Bhattacharya, R.N., Batchelor, W., Wiesner, H., Hasoon, F., Granata, J.E., Ramanathan, K., Alleman, J., Keane, J., Mason, A., Matson, R.J., and Noufi, R.N.: 14.1% CuIn1–xGaxSe2-based photovoltaic cells from electrodeposited precursors. J. Electrochem. Soc. 145, 3435 (1998).CrossRefGoogle Scholar
8Thouin, L. and Vedel, J.: Electrodeposition and characterization of CuInSe2 thin films. J. Electrochem. Soc. 142, 2996 (1995).CrossRefGoogle Scholar
9Guillen, C. and Herrero, J.: Reaction pathways to CuInSe2 formation from electrodeposited precursors. J. Electrochem. Soc. 142, 1834 (1995).CrossRefGoogle Scholar
10Zhang, S.B., Wei, S.H., Zunger, A., and Katayama-Yoshida, H.: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
11Nishiwaki, S., Satoh, T., Hayashi, S., Hashimoto, Y., Negami, T., and Wada, T.: Preparation of Cu(In,Ga)Se2 thin films from In–Ga–Se precursors for high-efficiency solar cells. J. Mater. Res. 14, 4514 (1999).CrossRefGoogle Scholar
12Park, J.S., Dong, Z., Kim, S., and Perepezko, J.H.: CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. J. Appl. Phys. 87, 3683 (2000).CrossRefGoogle Scholar
13Guillemoles, J.F., Lusson, A., Cowache, P., Massaccesi, S., Vedel, J., and Lincot, D.: Recrystallisation of electrodeposite copper indium diselenide thin films under selenium pressure. Adv. Mater. 6, 379 (1994).CrossRefGoogle Scholar
14Wang, D., Wan, L., Bai, Z., and Cao, Y.: Mixed phases in p-type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy. Appl. Phys. Lett. 92, 211912 (2008).CrossRefGoogle Scholar
15Wang, D., Zhao, J., Chen, B., and Zhu, C.: Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering. J. Phys.: Condens. Matter 20, 085212 (2008).Google Scholar
16Hergert, F., Jost, S., Hock, R., and Purwins, M.: A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2. J. Solid State Chem. 179, 2394 (2006).CrossRefGoogle Scholar